🤗 Hugging Face | 📄 arXiv
Table-R1 introduces the first systematic study of inference-time scaling for table reasoning tasks. We develop two post-training strategies: distillation from frontier model reasoning traces and reinforcement learning with verifiable rewards (RLVR). Our 7B-parameter Table-R1-Zero model matches or surpasses GPT-4.1 and DeepSeek-R1 performance while exhibiting strong generalization to out-of-domain datasets.
git clone https://github.com/Table-R1/Table-R1.git
# Install verl framework
cd Table-R1/verl
pip install -e .
cd ..
pip install -r requirements.txt
# Prepare SFT dataset
python data/table-r1-sft.py
# Run SFT training
bash script/table-r1-sft.sh
# Prepare RLVR dataset
python data/table-r1-zero.py
# Run RLVR training
bash script/table-r1-zero.sh
# Prepare evaluation dataset
python data/table-r1-eval.py
# Run evaluation
bash script/table-r1-eval.sh
- All models are trained using the excellent verl framework
If you find Table-R1 useful in your research, please cite our paper:
@article{yang2025tabler1,
title={Table-R1: Inference-Time Scaling for Table Reasoning},
author={Yang, Zheyuan and Chen, Lyuhao and Cohan, Arman and Zhao, Yilun},
journal={arXiv preprint arXiv:2505.23621},
year={2025}
}