Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 93a86c9

Browse filesBrowse files
authored
Merge pull request gumdropsteve#9 from gumdropsteve/day_09
Add Day 9
2 parents 60c4da5 + 12d0c79 commit 93a86c9
Copy full SHA for 93a86c9

File tree

Expand file treeCollapse file tree

5 files changed

+2766
-0
lines changed
Filter options
Expand file treeCollapse file tree

5 files changed

+2766
-0
lines changed

‎day_09/00_intro_to_seaborn.ipynb

Copy file name to clipboardExpand all lines: day_09/00_intro_to_seaborn.ipynb
+1,430Lines changed: 1430 additions & 0 deletions
Large diffs are not rendered by default.

‎day_09/01_assignment.ipynb

Copy file name to clipboard
+179Lines changed: 179 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,179 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"### In each cell complete the task using pandas"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": null,
13+
"metadata": {},
14+
"outputs": [],
15+
"source": [
16+
"import pandas as pd\n",
17+
"import numpy as np"
18+
]
19+
},
20+
{
21+
"cell_type": "markdown",
22+
"metadata": {},
23+
"source": [
24+
"Read in the titanic.csv file in the `~/data` directory as a pandas dataframe called **df**"
25+
]
26+
},
27+
{
28+
"cell_type": "code",
29+
"execution_count": null,
30+
"metadata": {},
31+
"outputs": [],
32+
"source": []
33+
},
34+
{
35+
"cell_type": "markdown",
36+
"metadata": {},
37+
"source": [
38+
"Display the head of the dataframe"
39+
]
40+
},
41+
{
42+
"cell_type": "code",
43+
"execution_count": null,
44+
"metadata": {},
45+
"outputs": [],
46+
"source": []
47+
},
48+
{
49+
"cell_type": "markdown",
50+
"metadata": {},
51+
"source": [
52+
"What is the percentage of people who survived? (hint find the mean of the survival column)"
53+
]
54+
},
55+
{
56+
"cell_type": "code",
57+
"execution_count": null,
58+
"metadata": {},
59+
"outputs": [],
60+
"source": []
61+
},
62+
{
63+
"cell_type": "markdown",
64+
"metadata": {},
65+
"source": [
66+
"How many women and how many men survived?"
67+
]
68+
},
69+
{
70+
"cell_type": "code",
71+
"execution_count": null,
72+
"metadata": {},
73+
"outputs": [],
74+
"source": []
75+
},
76+
{
77+
"cell_type": "markdown",
78+
"metadata": {},
79+
"source": [
80+
"What is the percentage of people that survied who paid a fare less than 10?"
81+
]
82+
},
83+
{
84+
"cell_type": "code",
85+
"execution_count": null,
86+
"metadata": {},
87+
"outputs": [],
88+
"source": []
89+
},
90+
{
91+
"cell_type": "markdown",
92+
"metadata": {},
93+
"source": [
94+
"What is the average age of those who didn't survive?"
95+
]
96+
},
97+
{
98+
"cell_type": "code",
99+
"execution_count": null,
100+
"metadata": {},
101+
"outputs": [],
102+
"source": []
103+
},
104+
{
105+
"cell_type": "markdown",
106+
"metadata": {},
107+
"source": [
108+
"What is the average age of those who did survive?"
109+
]
110+
},
111+
{
112+
"cell_type": "code",
113+
"execution_count": null,
114+
"metadata": {},
115+
"outputs": [],
116+
"source": []
117+
},
118+
{
119+
"cell_type": "markdown",
120+
"metadata": {},
121+
"source": [
122+
"What is the average age of those who did and didn't survive grouped by gender?"
123+
]
124+
},
125+
{
126+
"cell_type": "code",
127+
"execution_count": null,
128+
"metadata": {},
129+
"outputs": [],
130+
"source": []
131+
},
132+
{
133+
"cell_type": "markdown",
134+
"metadata": {},
135+
"source": [
136+
"## Tidy GDP"
137+
]
138+
},
139+
{
140+
"cell_type": "markdown",
141+
"metadata": {},
142+
"source": [
143+
"Manipulate the GDP.csv file and make it tidy, the result should be a pandas dataframe with the following columns:\n",
144+
"* Country Name\n",
145+
"* Country Code\n",
146+
"* Year\n",
147+
"* GDP"
148+
]
149+
},
150+
{
151+
"cell_type": "code",
152+
"execution_count": null,
153+
"metadata": {},
154+
"outputs": [],
155+
"source": []
156+
}
157+
],
158+
"metadata": {
159+
"kernelspec": {
160+
"display_name": "Python 3",
161+
"language": "python",
162+
"name": "python3"
163+
},
164+
"language_info": {
165+
"codemirror_mode": {
166+
"name": "ipython",
167+
"version": 3
168+
},
169+
"file_extension": ".py",
170+
"mimetype": "text/x-python",
171+
"name": "python",
172+
"nbconvert_exporter": "python",
173+
"pygments_lexer": "ipython3",
174+
"version": "3.5.6"
175+
}
176+
},
177+
"nbformat": 4,
178+
"nbformat_minor": 2
179+
}

‎day_09/Pandas_Cheat_Sheet.pdf

Copy file name to clipboard
331 KB
Binary file not shown.

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.