Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
/ VAD Public
forked from hustvl/VAD

[ICCV 2023] VAD: Vectorized Scene Representation for Efficient Autonomous Driving

License

Notifications You must be signed in to change notification settings

SIME-LAB/VAD

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
24 Commits
 
 
 
 
 
 
 
 

Repository files navigation

VAD: Vectorized Scene Representation for Efficient Autonomous Driving

vis_vad.mp4

VAD: Vectorized Scene Representation for Efficient Autonomous Driving

Bo Jiang1*, Shaoyu Chen1*, Qing Xu2, Bencheng Liao1, Jiajie Chen2, Helong Zhou2, Qian Zhang2, Wenyu Liu1, Chang Huang2, Xinggang Wang1,†

1 Huazhong University of Science and Technology, 2 Horizon Robotics

*: equal contribution, : corresponding author.

arXiv Paper, ICCV 2023

News

  • 14 July, 2023: VAD is accepted by ICCV 2023🎉! Code and models will be open source in July!
  • 21 Mar, 2023: We release the VAD paper on arXiv. Code/Models are coming soon. Please stay tuned! ☕️

Introduction

VAD is a vectorized paradigm for end-to-end autonomous driving.

  • We propose VAD, an end-to-end unified vectorized paradigm for autonomous driving. VAD models the driving scene as a fully vectorized representation, getting rid of computationally intensive dense rasterized representation and hand-designed post-processing steps.
  • VAD implicitly and explicitly utilizes the vectorized scene information to improve planning safety, via query interaction and vectorized planning constraints.
  • VAD achieves SOTA end-to-end planning performance, outperforming previous methods by a large margin. Not only that, because of the vectorized scene representation and our concise model design, VAD greatly improves the inference speed, which is critical for the real-world deployment of an autonomous driving system.

Results

  • Open-loop planning results on nuScenes. See the paper for more details.
Method L2 (m) 1s L2 (m) 2s L2 (m) 3s Col. (%) 1s Col. (%) 2s Col. (%) 3s FPS
ST-P3 1.33 2.11 2.90 0.23 0.62 1.27 1.6
UniAD 0.48 0.96 1.65 0.05 0.17 0.71 1.8
VAD-Tiny 0.46 0.76 1.12 0.21 0.35 0.58 16.8
VAD-Base 0.41 0.70 1.05 0.07 0.17 0.41 4.5

Catalog

  • Code & Checkpoints Release
  • Initialization

Contact

If you have any questions or suggestions about this repo, please feel free to contact us (bjiang@hust.edu.cn, outsidercsy@gmail.com).

Citation

If you find VAD useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@article{jiang2023vad,
  title={VAD: Vectorized Scene Representation for Efficient Autonomous Driving},
  author={Jiang, Bo and Chen, Shaoyu and Xu, Qing and Liao, Bencheng and Chen, Jiajie and Zhou, Helong and Zhang, Qian and Liu, Wenyu and Huang, Chang and Wang, Xinggang},
  journal={ICCV},
  year={2023}
}

License

All code in this repository is under the Apache License 2.0.

Acknowledgement

VAD is based on the following projects: mmdet3d, detr3d, BEVFormer and MapTR. Many thanks for their excellent contributions to the community.

About

[ICCV 2023] VAD: Vectorized Scene Representation for Efficient Autonomous Driving

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.