Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Berlekamp-Massey Algorithm 可以输出每一步结果或直接输出解题过程

License

Notifications You must be signed in to change notification settings

RyiLiu/BM-Algorithm

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BM-Algorithm

Berlekamp-Massey 算法的 Python 3 实现。

使用

$ python mian.py -h
usage: mian.py [-h] [-d {1,2,3}] [-l {ch,en}] [-v VERSION] flow

普通模式

$ python main.py 10011011000111010100
输入序列为:10011011000111010100
可以生成此序列的最优为 11 级线性反馈移位寄存器
该寄存器的连接多项式为:f(x) = 1 + x^3 + x^9 + x^11

调试等级 1

$ python mian.py -d 1 10011011000111010100
f1(x) = 1 + x
f2(x) = 1
f4(x) = 1 + x^3
f5(x) = 1 + x + x^3
f6(x) = 1 + x + x^2 + x^3
f7(x) = 1 + x + x^2
f10(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6
f11(x) = 1 + x^4 + x^5 + x^6
f12(x) = 1 + x^2 + x^3 + x^5 + x^6
f13(x) = 1 + x^2 + x^4 + x^6
f14(x) = 1 + x + x^2 + x^3 + x^7
f16(x) = 1 + x + x^2 + x^5 + x^6 + x^7 + x^8 + x^9
f17(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9
f20(x) = 1 + x^3 + x^9 + x^11
输入序列为:10011011000111010100
可以生成此序列的最优为 11 级线性反馈移位寄存器
该寄存器的连接多项式为:f(x) = 1 + x^3 + x^9 + x^11

调试等级 2

$ python -u mian.py -d 2 10011011000111010100
l(1)=1    f1(x) = 1 + x
l(1)=1    f2(x) = 1
l(2)=1    f3(x) = 1
l(3)=3    f4(x) = 1 + x^3
l(4)=3    f5(x) = 1 + x + x^3
l(5)=3    f6(x) = 1 + x + x^2 + x^3
l(6)=4    f7(x) = 1 + x + x^2
l(7)=4    f8(x) = 1 + x + x^2
l(8)=4    f9(x) = 1 + x + x^2
l(9)=6    f10(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6
l(10)=6    f11(x) = 1 + x^4 + x^5 + x^6
l(11)=6    f12(x) = 1 + x^2 + x^3 + x^5 + x^6
l(12)=7    f13(x) = 1 + x^2 + x^4 + x^6
l(13)=7    f14(x) = 1 + x + x^2 + x^3 + x^7
l(14)=7    f15(x) = 1 + x + x^2 + x^3 + x^7
l(15)=9    f16(x) = 1 + x + x^2 + x^5 + x^6 + x^7 + x^8 + x^9
l(16)=9    f17(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9
l(17)=9    f18(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9
l(18)=9    f19(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9
l(19)=11    f20(x) = 1 + x^3 + x^9 + x^11

调试等级 3

本格式用于本人提交作业的。

$ python mian.py -d 3 10011011000111010100
n(0) = 0
f0(x) = 1
l0 = 0
n = 1
l(1)=1    f1(x) = 1 + x

n = 1   d(1) = 1  m = 0
l(1)=1    f2(x) = 1

n = 2   d(2) = 0  m = 0
l(2)=1    f3(x) = 1

n = 3   d(3) = 1  m = 3
l(3)=3    f4(x) = 1 + x^3

n = 4   d(4) = 1  m = 3
l(4)=3    f5(x) = 1 + x + x^3

n = 5   d(5) = 1  m = 3
l(5)=3    f6(x) = 1 + x + x^2 + x^3

n = 6   d(6) = 1  m = 6
l(6)=4    f7(x) = 1 + x + x^2

n = 7   d(7) = 0  m = 6
l(7)=4    f8(x) = 1 + x + x^2

n = 8   d(8) = 0  m = 6
l(8)=4    f9(x) = 1 + x + x^2

n = 9   d(9) = 1  m = 9
l(9)=6    f10(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6

n = 10   d(10) = 1  m = 9
l(10)=6    f11(x) = 1 + x^4 + x^5 + x^6

n = 11   d(11) = 1  m = 9
l(11)=6    f12(x) = 1 + x^2 + x^3 + x^5 + x^6

n = 12   d(12) = 1  m = 12
l(12)=7    f13(x) = 1 + x^2 + x^4 + x^6

n = 13   d(13) = 1  m = 12
l(13)=7    f14(x) = 1 + x + x^2 + x^3 + x^7

n = 14   d(14) = 0  m = 12
l(14)=7    f15(x) = 1 + x + x^2 + x^3 + x^7

n = 15   d(15) = 1  m = 15
l(15)=9    f16(x) = 1 + x + x^2 + x^5 + x^6 + x^7 + x^8 + x^9

n = 16   d(16) = 1  m = 15
l(16)=9    f17(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9

n = 17   d(17) = 0  m = 15
l(17)=9    f18(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9

n = 18   d(18) = 0  m = 15
l(18)=9    f19(x) = 1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9

n = 19   d(19) = 1  m = 19
l(19)=11    f20(x) = 1 + x^3 + x^9 + x^11

输入序列为:10011011000111010100
可以生成此序列的最优为 11 级线性反馈移位寄存器
该寄存器的连接多项式为:f(x) = 1 + x^3 + x^9 + x^11

TODO

  • 英文模式

问题反馈

henry@hejunlin.cn

About

Berlekamp-Massey Algorithm 可以输出每一步结果或直接输出解题过程

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.