Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

QuantEcon/Expectations.jl

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CI codecov

Expectations

Installation (for Julia v1.0 and up):

pkg> add Expectations

See Pkg docs for more details

This is a package designed to simplify the process of taking expectations of functions of random variables.

Expectation Operator

The key object is the expectation function, which returns an operator:

dist = Normal()
E = expectation(dist)
E(x -> x)

For convenience, the operator can be applied directly to a function instead of being cached,

expectation(x->x^2, dist)

As a linear operator on vectors using the nodes of the distribution

dist = Normal()
E = expectation(dist)
x = nodes(E)
f(x) = x^2
E * f.(x) == dot(f.(x), weights(E))

Random Variables

The underlying distributions are objects from Distributions.jl (currently <:UnivariateDistribution).

Starting with 1.3.0, we also support mixture models.

Quadrature Algorithms

We support different types of Gaussian quadrature (Gauss-Hermite, Gauss-Legendre, Gauss-Laguerre, etc.) based on the distribution, as well as some methods with user-defined nodes (e.g., trapezoidal integration).

We have rules for the following distributions:

  • Normal
  • ChiSq
  • LogNormal
  • Exponential
  • Beta
  • Gamma/Erlang
  • Uniform
  • Continuous Univariate (compact; generic fallback)
  • Continuous Univariate (no restriction; approximates with quantile grid)
  • Discrete

See docs for more info.

Mixture Models

We also support mixture models, e.g.

d = MixtureModel([Uniform(), Normal(), Gamma()]);
E = expectation(d);
E(x -> x) # 0.5000000000000016

The MixtureExpectation objects support most of the same behavior as the individual IterableExpectations.

2E(x -> x) # 1.000000000000003
weights(E) # [1/3, 1/3, 1/3]
expectations(E) # component expectations

About

Expectation operators for Distributions.jl objects

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

  •  

Packages

No packages published

Contributors 9

Morty Proxy This is a proxified and sanitized view of the page, visit original site.