Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

QX-N/SAM-Adapter-PyTorch

 
 

Repository files navigation

SAM Fails to Segment Anything?—SAM-adapter: Adapting SAM in Underperformed Scenes

Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Yan Wang, Zejian Li, Lingyun Sun, Papa Mao, Ying Zang

KOKONI, Moxin Technology (Huzhou) Co., LTD , Zhejiang University, Singapore University of Technology and Design, Huzhou University, Beihang University.

Environment

This code was implemented with Python 3.8 and PyTorch 1.13.0. You can install all the requirements via:

pip install -r requirements.txt

Quick Start

  1. Download the dataset and put it in ./load.
  2. Download the pre-trained SAM(Segment Anything) and put it in ./pretrained.
  3. Training:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nnodes 1 --nproc_per_node 4 loadddptrain.py --config configs/base.yaml
  1. Evaluation:
python test.py --config [CONFIG_PATH] --model [MODEL_PATH]

Train

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch train.py --nnodes 1 --nproc_per_node 4 --config [CONFIG_PATH]

Test

python test.py --config [CONFIG_PATH] --model [MODEL_PATH]

Pre-trained Models

To be uploaded

Dataset

Camouflaged Object Detection

Shadow Detection

Citation

If you find our work useful in your research, please consider citing:

@misc{chen2023sam,
      title={SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, and More}, 
      author={Tianrun Chen and Lanyun Zhu and Chaotao Ding and Runlong Cao and Shangzhan Zhang and Yan Wang and Zejian Li and Lingyun Sun and Papa Mao and Ying Zang},
      year={2023},
      eprint={2304.09148},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

The part of the code is derived from Explicit Visual Prompt by Weihuang Liu, Xi Shen, Chi-Man Pun, and Xiaodong Cun by University of Macau and Tencent AI Lab.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.