Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Object detection project for real-time (webcam) and offline (video processing) application.

License

Notifications You must be signed in to change notification settings

QLwin/Object-detection

Open more actions menu
 
 

Repository files navigation

Object-detection

Apply tensorflow object detection on input video stream. One could use webcam (or any other device) stream or send a video file. It is possible to write Output put file with detection boxes.

To use it:

Clone repo in your working directory

Build docker image:

docker build -t realtime-objectdetection .

Configure script (see bellow)

Launch script:

bash runDocker.sh

Volume (-v): Replace /home/leo/Documents/SandBox path by your local path to real time project.

To configure it:

Configuration is made in exec.sh at python function call:

python3 my-object-detection.py ...

All possible arguments are:

-n (--num-frames): type=int, default=0: # of frames to loop over for FPS test

-d (--display), type=int, default=0: Whether or not frames should be displayed

-o (--output), type=int, default=0: Whether or not modified videos shall be writen

-on (--output-name), type=str, default="output": Name of the output video file

-I (--input-device), type=int, default=0: Device number input

-i (--input-videos), type=str, default="": Path to videos input, overwrite device input if used

-w (--num-workers), type=int, default=2: Number of workers

-q-size (--queue-size), type=int, default=5: Size of the queue

-l (--logger-debug), type=int, default=0: Print logger debug

Suggested numbers of workers and queues size:

  • Webcam stream: default values
  • Video stream: 20 workers, 150 queue size (Maybe little hand tunning could be done)

Inputs file are in inputs/ folder

Outputs file are in outputs/ folder (.avi)

About

Object detection project for real-time (webcam) and offline (video processing) application.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 84.2%
  • Dockerfile 13.4%
  • Shell 2.4%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.