Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

ProjectRecommend/DeepAudioClassification

Open more actions menu
 
 

Repository files navigation

Deep Audio Classification

A pipeline to build a dataset from your own music library and use it to fill the missing genres

Read the article on Medium

Required install:

eyed3
sox --with-lame
tensorflow
tflearn
  • Create folder Data/Raw/
  • Place your labeled .mp3 files in Data/Raw/

To create the song slices (might be long):

python main.py slice

To train the classifier (long too):

python main.py train

To test the classifier (fast):

python main.py test
  • Most editable parameters are in the config.py file, the model can be changed in the model.py file.
  • I haven't implemented the pipeline to label new songs with the model, but that can be easily done with the provided functions, and eyed3 for the mp3 manipulation. Here's the full pipeline you would need to use.

alt tag

About

Finding the genre of a song with Deep Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.