Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

McMasterU/HashedExpression

Open more actions menu

Repository files navigation

HashedExpression

Haskell-embeded Algebraic Modeling Language: solving mathematical optimization with type-safety, symbolic transformation and C-code generation.

Further reading: Type-safe Modeling for Optimization

Features

  • A type-safe, correct-by-construction APIs to model optimization problems using type-level programming.

    • For example, adding 2 expressions with mismatched shape or element type (R or C) will result in type error will result in type error:
    λ> let x = variable1D @10 "x"
    λ> let y = variable1D @9 "y"
    λ> :t x
    x :: TypedExpr '[10] 'R
    λ> :t y
    y :: TypedExpr '[9] 'R
    λ> x + y
    <interactive>:5:5: error:
         Couldn't match type 9 with 10
          Expected type: TypedExpr '[10] 'R
            Actual type: TypedExpr '[9] 'R
         In the second argument of (+), namely y
          In the expression: x + y
          In an equation for it’: it = x + y
    λ> let x = variable1D @10 "x"
    λ> let x = variable2D @10 @10 "x"
    λ> let y = variable2D @10 @10 "y"
    λ> let c = x +: y
    λ> :t c
    c :: TypedExpr '[10, 10] 'C
    λ> let z = variable2D @10 @10 "z"
    λ> :t z
    z :: TypedExpr '[10, 10] 'R
    λ> z + c
    
    <interactive>:13:5: error:
         Couldn't match type 'C with 'R
          Expected type: TypedExpr '[10, 10] 'R
            Actual type: TypedExpr '[10, 10] 'C
          Type synonyms expanded:
          Expected type: TypedExpr '[10, 10] 'R
            Actual type: TypedExpr '[10, 10] 'C
         In the second argument of (+), namely c
          In the expression: z + c
          In an equation for it’: it = z + c
  • Automatically simplify expressions and compute derivatives, identify common subexpressions.

    • We represent expressions symbolically. Expressions are hashed and indexed in a common lookup table, thus allows for identifying common subexpressions.
    • Derivatives are computed by reverse accumulation method.
  • Generate code which can be compiled with optimization solvers (such as LBFGS, LBFGS-B, Ipopt, see solvers).

Supported operations:

  • basic algebraic operations: addition, multiplication, etc.
  • complex related: real, imag, conjugate, etc.
  • trigonometry, log, exponential, power.
  • rotation, projection (think of Python's slice notation, but with type-safety), and injection (reverse of projection)
  • piecewise function
  • Fourier Transform, inverse Fourier Transform
  • dot product (inner product), matrix multiplication

Examples

For those examples taken from Coursera's Machine Learning, data and plotting scripts are based on https://github.com/nsoojin/coursera-ml-py.

Linear regression

Taken from exercise 1 - Machine Learning - Coursera.

Model is in app/Examples/LinearRegression.hs, data & plotting script is in examples/LinearRegression

ex1_linearRegression :: OptimizationProblem
ex1_linearRegression =
  let x = param1D @97 "x"
      y = param1D @97 "y"
      theta0 = variable "theta0"
      theta1 = variable "theta1"
      objective = norm2square ((theta0 *. 1) + (theta1 *. x) - y)
   in OptimizationProblem
        { objective = objective,
          constraints = [],
          values =
            [ x :-> VFile (TXT "x.txt"),
              y :-> VFile (TXT "y.txt")
            ]
        }

((*.) is scaling )

Logistic regression

Taken from exercise 2 - Machine Learning - Coursera.

Model is in app/Examples/LogisticRegression.hs, data & plotting script is in examples/LogisticRegression

sigmoid :: (ToShape d) => TypedExpr d R -> TypedExpr d R
sigmoid x = 1.0 / (1.0 + exp (- x))

ex2_logisticRegression :: OptimizationProblem
ex2_logisticRegression =
  let -- variables
      theta = variable1D @28 "theta"
      -- parameters
      x = param2D @118 @28 "x"
      y = param1D @118 "y"
      hypothesis = sigmoid (x ** theta)
      -- regularization
      lambda = 1
      regTheta = project (range @1 @27) theta
      regularization = (lambda / 2) * (regTheta <.> regTheta)
   in OptimizationProblem
        { objective = sumElements ((- y) * log hypothesis - (1 - y) * log (1 - hypothesis)) + regularization,
          constraints = [],
          values =
            [ x :-> VFile (TXT "x_expanded.txt"),
              y :-> VFile (TXT "y.txt")
            ]
        }

( (**) is matrix multiplication, (<.>) is dot product, project (range @1 @27, at @0) theta is the typed version of theta[1:27,0] )

MRI Reconstruction

Model is in app/Examples/Brain.hs, data is in examples/Brain

brainReconstructFromMRI :: OptimizationProblem
brainReconstructFromMRI =
  let -- variables
      x = variable2D @128 @128 "x"
      --- bound
      xLowerBound = bound2D @128 @128 "x_lb"
      xUpperBound = bound2D @128 @128 "x_ub"
      -- parameters
      im = param2D @128 @128 "im"
      re = param2D @128 @128 "re"
      mask = param2D @128 @128 "mask"
      -- regularization
      regularization = norm2square (rotate (0, 1) x - x) + norm2square (rotate (1, 0) x - x)
      lambda = 3000
   in OptimizationProblem
        { objective =
            norm2square ((mask +: 0) * (ft (x +: 0) - (re +: im)))
              + lambda * regularization,
          constraints =
            [ x .<= xUpperBound,
              x .>= xLowerBound
            ],
          values =
            [ im :-> VFile (HDF5 "kspace.h5" "im"),
              re :-> VFile (HDF5 "kspace.h5" "re"),
              mask :-> VFile (HDF5 "mask.h5" "mask"),
              xLowerBound :-> VFile (HDF5 "bound.h5" "lb"),
              xUpperBound :-> VFile (HDF5 "bound.h5" "ub")
            ]
        }

Neural network

Taken from exercise 4 - Machine Learning - Coursera.

Model is in app/Examples/NeuralNetwork.hs, data & plotting script is in examples/NeuralNetwork

sigmoid :: (ToShape d) => TypedExpr d R -> TypedExpr d R
sigmoid x = 1.0 / (1.0 + exp (- x))

prependColumn ::
  forall m n.
  (Injectable 0 (m - 1) m m, Injectable 1 n n (n + 1)) =>
  Double ->
  TypedExpr '[m, n] R ->
  TypedExpr '[m, n + 1] R
prependColumn v exp = inject (range @0 @(m - 1), range @1 @n) exp (constant2D @m @(n + 1) v)

ex4_neuralNetwork :: OptimizationProblem
ex4_neuralNetwork =
  let x = param2D @5000 @400 "x"
      y = param2D @5000 @10 "y"
      -- variables
      theta1 = variable2D @401 @25 "theta1"
      theta2 = variable2D @26 @10 "theta2"
      -- neural net
      a1 = prependColumn 1 x
      z2 = sigmoid (a1 ** theta1)
      a2 = prependColumn 1 z2
      hypothesis = sigmoid (a2 ** theta2)
      -- regularization
      lambda = 1
      regTheta1 = project (range @1 @400, range @0 @24) theta1 -- no first row
      regTheta2 = project (range @1 @25, range @0 @9) theta2 -- no first row
      regularization = (lambda / 2) * (norm2square regTheta1 + norm2square regTheta2)
   in OptimizationProblem
        { objective = sumElements ((- y) * log hypothesis - (1 - y) * log (1 - hypothesis)) + regularization,
          constraints = [],
          values =
            [ x :-> VFile (HDF5 "data.h5" "x"),
              y :-> VFile (HDF5 "data.h5" "y")
            ]
        }

(The second image visualizes the (trained) hidden layer. Training set accuracy 99.64%)

Contributing

Please read Contributing.md. PRs are welcome.

About

The project is developed and maintained by Dr. Christopher Anand's research group, Computing and Software department, McMaster University.

List of contributors:

Morty Proxy This is a proxified and sanitized view of the page, visit original site.