Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

JuliaLinearAlgebra/ArnoldiMethod.jl

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ArnoldiMethod.jl

CI Codecov

The Arnoldi Method with Krylov-Schur restart, natively in Julia.

Docs

Stable docs Latest docs

Goal

Make eigs an efficient and native Julia function.

Installation

Open the package manager in the REPL via ] and run

(v1.6) pkg> add ArnoldiMethod

Example

julia> using ArnoldiMethod, LinearAlgebra, SparseArrays

julia> A = spdiagm(
           -1 => fill(-1.0, 99),
            0 => fill(2.0, 100), 
            1 => fill(-1.0, 99)
       );

julia> decomp, history = partialschur(A, nev=10, tol=1e-6, which=:SR);

julia> decomp
PartialSchur decomposition (Float64) of dimension 10
eigenvalues:
10-element Array{Complex{Float64},1}:
 0.0009674354160236865 + 0.0im
  0.003868805732811139 + 0.0im
  0.008701304061962657 + 0.0im
   0.01546025527344699 + 0.0im
  0.024139120518486677 + 0.0im
    0.0347295035554728 + 0.0im
   0.04722115887278571 + 0.0im
   0.06160200160067088 + 0.0im
    0.0778581192025522 + 0.0im
   0.09597378493453936 + 0.0im

julia> history
Converged: 10 of 10 eigenvalues in 174 matrix-vector products

julia> norm(A * decomp.Q - decomp.Q * decomp.R)
6.39386920955869e-8

julia> λs, X = partialeigen(decomp);

julia> norm(A * X - X * Diagonal(λs))
6.393869211477937e-8

ArnoldiMethod.jl is generic

ArnoldiMethod.jl's Schur decomposition is written in Julia, it does not use LAPACK. This allows you to use arbitrary number types.

We repeat the above example with DoubleFloats.jl and more accuracy.

julia> using ArnoldiMethod, DoubleFloats, LinearAlgebra, SparseArrays

julia> A = spdiagm(
           -1 => fill(Double64(-1), 99),
            0 => fill(Double64(2), 100), 
            1 => fill(Double64(-1), 99)
       );

julia> decomp, history = partialschur(A, nev=10, tol=1e-28, which=:SR);

julia> decomp
PartialSchur decomposition (Double64) of dimension 10
eigenvalues:
10-element Vector{Complex{Double64}}:
  9.6743541602387015850892187143202406e-04 + 0.0im
 3.86880573281130335530623278634505297e-03 + 0.0im
 8.70130406196283903200426213162702754e-03 + 0.0im
 1.54602552734469798152574737604660783e-02 + 0.0im
 2.41391205184865585041130463401142985e-02 + 0.0im
 3.47295035554726251259365854776375027e-02 + 0.0im
 4.72211588727859409278578405476287512e-02 + 0.0im
 6.16020016006677741124091774018629622e-02 + 0.0im
 7.78581192025509024705094505968950069e-02 + 0.0im
 9.59737849345402152393882633733121172e-02 + 0.0im

julia> history
Converged: 10 of 10 eigenvalues in 442 matrix-vector products

julia> norm(A * decomp.Q - decomp.Q * decomp.R)
4.53243232681764960018699535610331068e-30

julia> norm(decomp.Q' * decomp.Q - I)
3.53573060252329801278244497021683397e-29

About

The Arnoldi Method with Krylov-Schur restart, natively in Julia.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Contributors 12

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.