Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

πŸš— Advanced LSTM-based transportation demand forecasting achieving MAPE: 2.8% with multivariate time-series analysis ⚑ Real-time prediction API with external regressors (weather, events) and statistical validation using Granger causality tests

Notifications You must be signed in to change notification settings

JayDS22/Transportation_And_Demand_Forecasting

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Transportation Demand Forecasting System

A comprehensive machine learning system for predicting transportation demand using LSTM networks, time-series analysis, and external regressors.

πŸ“Š Key Results

  • MAPE: 2.8% - Mean Absolute Percentage Error
  • Directional Accuracy: 89.3% - Trend prediction accuracy
  • 34% improvement in forecast accuracy with external regressors
  • AIC: 1,247, BIC: 1,298 - Statistical model fit metrics

πŸš€ Features

  • LSTM-based demand prediction
  • Multivariate time-series modeling
  • External regressors (weather, events, holidays)
  • Seasonal decomposition and ARIMA modeling
  • Granger causality testing
  • Real-time prediction API

πŸ›  Tech Stack

  • Python 3.9+
  • PyTorch for deep learning
  • Statsmodels for time-series analysis
  • Pandas & NumPy for data manipulation
  • Scikit-learn for preprocessing
  • FastAPI for API development
  • Docker for containerization

πŸ“ Project Structure

transportation-demand-forecasting/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ data/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ data_loader.py
β”‚   β”‚   └── preprocessor.py
β”‚   β”œβ”€β”€ models/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ lstm_model.py
β”‚   β”‚   β”œβ”€β”€ arima_model.py
β”‚   β”‚   └── ensemble_model.py
β”‚   β”œβ”€β”€ features/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ external_features.py
β”‚   β”‚   └── time_features.py
β”‚   β”œβ”€β”€ evaluation/
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── metrics.py
β”‚   └── api/
β”‚       β”œβ”€β”€ __init__.py
β”‚       └── main.py
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ raw/
β”‚   β”œβ”€β”€ processed/
β”‚   └── external/
β”œβ”€β”€ notebooks/
β”‚   β”œβ”€β”€ 01_exploratory_analysis.ipynb
β”‚   β”œβ”€β”€ 02_feature_engineering.ipynb
β”‚   └── 03_model_evaluation.ipynb
β”œβ”€β”€ tests/
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ Dockerfile
└── README.md

πŸš€ Quick Start

  1. Clone the repository
git clone https://github.com/JayDS22/transportation-demand-forecasting.git
cd transportation-demand-forecasting
  1. Install dependencies
pip install -r requirements.txt
  1. Run the training pipeline
python src/train.py --config config/train_config.yaml
  1. Start the API server
uvicorn src.api.main:app --reload

πŸ“ˆ Model Performance

Model MAPE MAE RMSE Directional Accuracy
LSTM 2.8% 12.4 18.7 89.3%
ARIMA 4.1% 18.2 25.3 82.1%
Ensemble 2.6% 11.8 17.2 91.2%

πŸ“Š Statistical Tests

  • Granger Causality Test: p-value < 0.05 for weather features
  • Augmented Dickey-Fuller Test: Stationarity confirmed
  • Ljung-Box Test: No autocorrelation in residuals

πŸ”— API Endpoints

  • POST /predict - Single prediction
  • POST /batch_predict - Batch predictions
  • GET /model_info - Model metadata
  • GET /health - Health check

About

πŸš— Advanced LSTM-based transportation demand forecasting achieving MAPE: 2.8% with multivariate time-series analysis ⚑ Real-time prediction API with external regressors (weather, events) and statistical validation using Granger causality tests

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.