Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Pointer networks 指针网络解决旅行商问题,基于tensorflow2。附带文章详解与代码注释。

Notifications You must be signed in to change notification settings

Howardhuang98/Pointer_network

Open more actions menu

Repository files navigation

Pointer networks Tensorflow2

原文:https://arxiv.org/abs/1506.03134
数据:http://goo.gl/NDcOIG
仅供参考与学习,内含代码备注

性能表现

节点数目 模型预测路径长度-最佳路径长度 超参数 Version
5 0.033425577472687575 adam优化器,LSTM128个隐藏层
5 0.02872023683121583 SGD,LSTM256个隐藏层
5 0.002466938746992173 先用adam,再用SGD,LSTM256个隐藏层 52681ca
5 0.006658690644487206 使用beam search b88762b

版本写的是commit id,可以用git进行rollback。

image-model_accuracy image-model_loss

环境

tensorflow==2.6.0
tqdm
matplotlib
numpy

代码细节

test/test_model.py 文件运行结果:可以看出输入的时间戳(城市数目)分别是5,7,但是两个模型的参数量都是661760。说明模型参数与城市个数无关,可用于variable size sorting。

Model: "model"
_________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
=================================================================================
main_input (InputLayer)         [(None, 5, 2)]       0                                            
_________________________________________________________________________________
encoder (Encoder)               ((None, 5, 256), (No 265216      main_input[0][0]                 
_________________________________________________________________________________
decoder (Decoder)               (None, 5, None)      396544      main_input[0][0]                 
                                                                 encoder[0][0]                    
                                                                 encoder[0][1]                    
                                                                 encoder[0][2]                    
=================================================================================
Total params: 661,760
Trainable params: 661,760
Non-trainable params: 0
_________________________________________________________________________________

Model: "model_1"
_________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
=================================================================================
main_input (InputLayer)         [(None, 7, 2)]       0                                            
_________________________________________________________________________________
encoder (Encoder)               ((None, 7, 256), (No 265216      main_input[0][0]                 
_________________________________________________________________________________
decoder (Decoder)               (None, 7, None)      396544      main_input[0][0]                 
                                                                 encoder[0][0]                    
                                                                 encoder[0][1]                    
                                                                 encoder[0][2]                    
=================================================================================
Total params: 661,760
Trainable params: 661,760
Non-trainable params: 0
_________________________________________________________________________________

《pointer networks》阅读笔记

应用场景:

文本摘要,凸包问题,Roundelay 三角剖分,旅行商问题

其中包括一些Latex,github无法渲染,所以建议clone下来用Typora查看。

abstract

本文提出一种新的网络结构:输出序列的元素是与输入序列中的位置相对应的离散标记。

an output sequence with elements that are discrete tokens corresponding to positions in an input sequence.

这种问题目前可以被一些现有的方法解决:sequence-to-sequence, neural turing machines。但是这些方法不是特别适用。

本文解决的问题是sorting variable sized sequences,以及各种组合优化问题。本模型使用attention机制来解决变化尺寸的输出。

intro

RNN模型的输出维度是固定的,sequence-to-sequence模型移除了这一个限制,通过用一个RNN把输入映射为一个embedding,又用一个RNN把embedding映射到输出序列。

但是这些sequence-to-sequence 方法都是固定大小的词汇表。

例如词汇表中只存在A,B,C。那么输入

1,2,3 ----> A,B,C

1,2,3,4 ----> A,B,C,A

本文提出的框架适用于输出的词汇表大小取决于输入问题的大小

image-20211105133740833

image-20211105134312635

左图:seq-2-seq

蓝色RNN,输出一个向量。

紫色RNN,利用概率的链式法则,输出一个固定维度。

本文的贡献如下:

  1. 提出一种新的结构,称为指针网路。简单且高效
  2. 良好的泛化性能
  3. 一个TSP近似求解器

Models

sequence-to-sequence 模型

训练数据为: $$ (P,C^P) $$ 其中,$\mathcal{P}=\left{P_{1}, \ldots, P_{n}\right}$,是n个向量。$\mathcal{C}^{\mathcal{P}}=\left{C_{1}, \ldots, C_{m( \mathcal{P})}\right}$ ,n个对应的结果,$m(\mathcal{P})\in [1,n]$ 。传统的sequence-to-sequence的$\mathcal{C}^{\mathcal{P}}$是固定大小的,但是要提前给定。本文的$\mathcal{C}^{\mathcal{P}}$为n,根据输入改变。

如果模型的参数记为$\theta$,神经网络模型表达为: $$ p(C^P|P,\theta) $$ 使用链式法则,写为: $$ p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right)=\prod_{i=1}^{m(\mathcal{P})} p_ {\theta}\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P} ; \theta\right) $$ 训练阶段,最大似然概率: $$ \theta^{*}=\underset{\theta}{\arg \max } \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log p\left( \mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta\right) $$ input sequence的末端加一个$\Rightarrow$,代表进入生成阶段,$\Leftarrow$代表结束生成阶段。

推断: $$ \hat{\mathcal{C}}^{\mathcal{P}}=\underset{\mathcal{C}^{\mathcal{P}}}{\arg \max } p\left(\mathcal{C}^{\mathcal{P}} \mid \mathcal{P} ; \theta^{*}\right) $$

content based input attention

对于attention机制,请查看《Neural Machine Translation By Jointly Learning To Align And Translate》阅读笔记。

对于LSTM RNN $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) & j \in(1, \ldots, n) \ a_ {j}^{i} &=\operatorname{softmax}\left(u_{j}^{i}\right) & j \in(1, \ldots, n) \ d_{i}^{\prime} &=\sum_{j=1}^{n} a_ {j}^{i} e_{j} & \end{aligned} $$ 对于这个传统的attention机制,可以看到$u^{i}$, 是一个长度为$n$的向量。

这样的话,在解码器的每一个时间步迭代都会得到一个 n 长度的向量,可以作为指针,用于指向之前的 n 长度的序列。

Ptr-Net

所以Ptr-Net计算公式写为: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$ image-20211111103159924

image-20211111110334755

数据以 [Batch, time_steps, feature] 的形式进入编码器LSTM(绿色部分),在时间步上迭代$n$次以后,得到:

  • n 个 e [batch, units], 可以合并写为 [batch, n, units]

  • 最后一个时间步输出的 c [batch, units]

进入到解码器LSTM(蓝色部分),输入为:

  • 上次得到解码得到的的pointer,如果是第一次则为initial pointer
  • 上次的状态d,c

pointer 如何得到?计算公式如下: $$ \begin{aligned} u_{j}^{i} &=v^{T} \tanh \left(W_{1} e_{j}+W_{2} d_{i}\right) \quad j \in(1, \ldots, n) \ p\left(C_{i} \mid C_{1}, \ldots, C_{i-1}, \mathcal{P}\right) &=\operatorname{softmax}\left(u^{i}\right) \end{aligned} $$

motivation and datasets structure

文章是为了解决三种问题,凸包,Delaunay Triangulation,旅行商问题。在此只对旅行商问题进行探讨。

travelling salesman problem

给定一个城市列表,我们希望找到一条最短的路线,每个城市只访问一次,然后返回起点。此外,假设两个城市之间的距离在正反方向上是相同的。这是一个NP难问题,测试模型的能力和局限性。

数据生成:

卡迪尔坐标系(二维),$[0,1] \times[0,1]$

使用 Held-Karp algorithm 得到准确解,n最多为20。

A1,A2,A3为三种其他算法。A1,A2时间复杂度为$O\left(n^{2}\right)$,A3时间复杂度为$O\left(n^{3}\right)$。A3,Christofides algorithm 算法保证在距离最佳长度1.5倍的范围内找到解,详细信息查看原文参考文献。生成1M个数据进行训练。

image-20211111111416012

分析表格:

  1. n=5的时候,性能都很好
  2. n=10,ptr-net的性能比A1好
  3. n=50的时候,无法超过数据集性能(因为ptr-net使用不准确的答案进行训练的)
  4. 只用n少的训练,推广到大n情况,性能不太好。

对于n=30的情况,Ptr-net算法复杂度为$O(n \log n)$,远低于A1,A2,A3。却有相似的性能,说明可发展空间还是很大的。

About

Pointer networks 指针网络解决旅行商问题,基于tensorflow2。附带文章详解与代码注释。

Topics

Resources

Stars

Watchers

Forks

Morty Proxy This is a proxified and sanitized view of the page, visit original site.