Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

GigaChatTester/llm_trainer

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Table of Contents

llm_trainer in 5 Lines of Code

from llm_trainer import create_dataset, LLMTrainer

create_dataset(save_dir="data")   # Generate the default FineWeb dataset
model = ...                       # Define or load your model (GPT, xLSTM, Mamba...)
trainer = LLMTrainer(model)       # Initialize trainer with default settings
trainer.train(data_dir="data")    # Start training on the dataset

🔴 YouTube Video: Train LLMs in code, spelled out

Note

Explore usage examples

Installation

$ pip install llm-trainer

How to Prepare Data

Option 1: Use the Default FineWeb Dataset

from llm_trainer import create_dataset

create_dataset(save_dir="data",         # Where to save created dataset
               chunks_limit=1_500,      # Maximum number of files (chunks) with tokens to create
               chunk_size=int(1e6))     # Number of tokens per chunk

Option 2: Use your own data

  1. Your dataset should be structured as a JSON array, where each entry contains a "text" field. You can store your data in one or multiple JSON files.

Example JSON file:

[
   {"text": "Learn about LLMs: https://www.youtube.com/@_NickTech"},
   {"text": "Open-source python library to train LLMs: https://github.com/Skripkon/llm_trainer."},
   {"text": "My name is Nikolay Skripko. Hello from Russia (2025)."}
]
  1. Run the following code to convert your JSON files into a tokenized dataset:
from llm_trainer import create_dataset_from_json

create_dataset_from_json(save_dir="data",        # Where to save created dataset
                         json_dir="json_files",  # Path to your JSON files
                         chunks_limit = 1_500,   # Maximum number of files (chunks) with tokens to create
                         chunk_size=int(1e6))    # Number of tokens per chunk 

Which Models Are Valid?

You can train ANY LLM that expects a tensor X with shape (batch_size, context_window) as input and returns logits during the forward pass.

How To Start Training?

You need to create an LLMTrainer object and call .train() on it. Read about its parameters below:

LLMTrainer() parameters

model:        torch.nn.Module = None,                      # The neural network model to train  
optimizer:    torch.optim.Optimizer = None,                # Optimizer responsible for updating model weights  
scheduler:    torch.optim.lr_scheduler.LRScheduler = None, # Learning rate scheduler for dynamic adjustment
tokenizer:    PreTrainedTokenizer | AutoTokenizer = None   # Tokenizer for generating text (used if verbose > 0 during training)
model_returns_logits: bool = False                         # Whether model(X) returns logits or an object with an attribute `logits`

You must specify only the model. The other attributes are optional and will be set to default values if not specified.

LLMTrainer.train() Parameters

Parameter Type Description Default value
max_steps int The maximum number of training steps 5,000
save_each_n_steps int The interval of steps at which to save model checkpoints 1,000
print_logs_each_n_steps int The interval of steps at which to print training logs 1
BATCH_SIZE int The total batch size for training 256
MINI_BATCH_SIZE int The mini-batch size for gradient accumulation 16
context_window int The context window size for the data loader 128
data_dir str The directory containing the training data "data"
logging_file Union[str, None] The file path for logging training metrics "logs_training.csv"
generate_each_n_steps int The interval of steps at which to generate and print text samples 200
prompt str Beginning of the sentence that the model will continue "Once upon a time"
save_dir str The directory to save model checkpoints "checkpoints"

Every parameter has a default value, so you can start training simply by calling LLMTrainer.train().

To contribute (instructions for Linux)

  1. Fork the repository.
  2. Set up environment:
python3 -m venv .venv
source .venv/bin/activate
pip install poetry
poetry install
  1. Make changes
  2. Apply linter
$ pip install pylint==3.3.5
$ pylint $(git ls-files '*.py')
  1. Run tests locally
pip install pytest
poetry run pytest
  1. Commit and push your changes
  2. Create a pull request from your fork to the main repository

About

🤖 Train and evaluate LLMs with ease and fun 🦾

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.