Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

DerekChen88/ML-notes

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML-notes

notes about machine learning

很喜欢一句话:应用之道,存乎一心,与大家共勉

ps:如果我的笔记对你有帮助,给个star叭!

ML配套Assignments (ppt+code):https://github.com/Sakura-gh/ML-assignments

内容包括:Regression, Classification, CNN, RNN, Explainable AI, Adversarial Attack, Network Compression, Seq2Seq, GAN, Transfer Learning, Meta Learning, Life-long Learning, Reforcement Learning.

pages

the github page is: https://Sakura-gh.github.io/ML-notes

you can also visit gitee page for quicker Internet in China: https://Sakura-gh.gitee.io/ml-notes

keras实践经验:

keras-tips

html链接:

1_Introduction

2_Regression Case Study

3_Regression demo(Adagrad)

4_Where does the error come from

5_Gradient Descent

6_Classification

7_Logistic Regression

8_Deep Learning

9_Backpropagation

10_Keras

11_Convolutional Neural Network part1

12_Convolutional Neural Network part2

13_Tips for Deep Learning

14_Why Deep

csdn博客链接:

机器学习系列1-机器学习概念及介绍

机器学习系列2-回归案例研究

梯度下降代码举例:Gradient Descent Demo(Adagrad)

机器学习系列4-模型的误差来源及减少误差的方法

机器学习系列5-梯度下降法

机器学习系列6-分类问题(概率生成模型)

机器学习系列7-逻辑回归

机器学习系列8-深度学习简介

机器学习系列9-反向传播

机器学习系列10-手写数字识别(Keras2.0)

机器学习系列11-卷积神经网络CNN part1

机器学习系列12-卷积神经网络CNN part2

机器学习系列13-深度学习的技巧和优化方法

机器学习系列14-为什么要做“深度”学习

代码链接:

Gradient Descent Demo(Adagrad)

手写数字识别(Keras2.0)

手写数字识别CNN实现(Keras2.0)

Assignments链接:
LICENSE:

GPL-2.0

温馨提示:

图片加载可能会有些许缓慢,请耐心等待\(^o^)/

更新说明:

最近打算创建一个微信公众号用于分享我在浙江大学计算机学院学习期间所记录的知识笔记和项目,暑假开始长期更新(也包括这个未完成的ML笔记),欢迎大家关注公众号"Sakura的知识库"

About

notes about machine learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 98.2%
  • Jupyter Notebook 1.7%
  • Python 0.1%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.