Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

CederGroupHub/sparse-lm

Open more actions menu

Repository files navigation

Sparse Linear Regression Models

test Codacy Badge pre-commit.ci status pypi version Static Badge DOI

sparse-lm includes several (structured) sparse linear regression estimators that are absent in the sklearn.linear_model module. The estimators in sparse-lm are designed to fit right into scikit-learn, but the underlying optimization problem is expressed and solved by leveraging cvxpy.


Available regression models

  • Lasso, Group Lasso, Overlap Group Lasso, Sparse Group Lasso & Ridged Group Lasso.
  • Adaptive versions of Lasso, Group Lasso, Overlap Group Lasso, Sparse Group Lasso & Ridged Group Lasso.
  • Best Subset Selection, Ridged Best Subset, L0, L1L0 & L2L0 (all with optional grouping of parameters)

Installation

sparse-lm is available on PyPI, and can be installed via pip:

pip install sparse-lm

Additional information on installation can be found the documentation here.

Basic usage

If you already use scikit-learn, using sparse-lm will be very easy. Just use any model like you would any linear model in scikit-learn:

import numpy as np
from sklearn.datasets import make_regression
from sklearn.model_selection import GridSearchCV
from sparselm.model import AdaptiveLasso

X, y = make_regression(n_samples=100, n_features=80, n_informative=10, random_state=0)
alasso = AdaptiveLasso(fit_intercept=False)
param_grid = {'alpha': np.logspace(-8, 2, 10)}

cvsearch = GridSearchCV(alasso, param_grid)
cvsearch.fit(X, y)
print(cvsearch.best_params_)

For more details on use and functionality have a look at the examples and API sections of the documentation.

Contributing

We welcome any contributions that you think may improve the package! Please have a look at the contribution guidelines in the documentation.

About

Sparse Linear Regression Models

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 7

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.