๐ Student, Faculty of Computational Mathematics and Cybernetics, MSU โ Department of Mathematical Statistics;
๐ญ Currently focused on Data Analysis with a roadmap to Data Science;
๐ Fluent with production pipelines, statistical modeling, and ML experimentation.
I am a motivated data professional studying advanced statistical methods and machine learning at MSU (Faculty of Computational Mathematics and Cybernetics). My immediate goal is to contribute as a Data Analyst โ delivering rigorous exploratory analysis, reliable dashboards, and A/B experimentationโwhile progressing towards Data Scientist responsibilities: building robust predictive models, designing experiments, and productionizing ML. I combine strong statistical foundations with hands-on experience in data engineering, model tuning, and reproducible pipelines. I value clean code, effective visualization, and explainable results that inform product and research decisions.
๐๐ฉ๐จโ๐ผTo look my CV: click here
๐ป I love writing code and analyse the data, then retrieve insights from it.
๐ฌ Ask me anything about from Here
๐ซ How to reach me: boris.cherkasov@outlook.com
---
โโโ โโโโโโโโโโโโโโโ โโโ โโโโโโโโโโโโโโโโโโโโโโ
โโโ โโโโโโโโโโโโโโโโ โโโ โโโโโโโโโโโโโโโโโโโโโโ
โโโ โโ โโโโโโโโโ โโโโโโ โโโ โโโโโโโโโโโโ โโโโโโโโ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโ โโโโโโโโโโโ โโโโโ โโโโโโ โโโโโโโโโโโโโโโโโโโ
โโโโโโโ โโโโโโ โโโโโโโโโ โโโโโโ
โโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโ
โโโ โโโโโโโโโโโโ โโโ โโโโโโโโ
โโโ โโโโโโโโโโโ โโโ โโโโโโโโ
โโโโโโโโโโโโ โโโ โโโ โโโ โโโ
โโโโโโโ โโโ โโโ โโโ โโโ โโโ
โDATA IS INSIGHT โ LETโS TURN IT INTO INTELLIGENCEโ
- Exploratory Data Analysis (EDA), hypothesis testing and cohort analysis;
- Production dashboards & BI instrumentation (Power BI, Superset, Qlik);
- A/B test design, analysis, and interpretation using statistical methods;
- ML model development, hyperparameter tuning (Optuna), and model evaluation;
- Time series forecasting, anomaly detection, and interpretable ML;
- MLOps fundamentals: Dockerized models, reproducible pipelines, basic model serving (FastAPI).

