Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 039ff4a

Browse filesBrowse files
committed
added a classification algorithms folder
1 parent 722817f commit 039ff4a
Copy full SHA for 039ff4a

File tree

2 files changed

+77
-0
lines changed
Filter options

2 files changed

+77
-0
lines changed

‎classification/fcm.py

Copy file name to clipboard
+57Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
from tools import *
2+
3+
# https://en.wikipedia.org/wiki/Fuzzy_clustering
4+
5+
6+
class FuzzyCMeans:
7+
def __init__(self, n_clusters, initial_centers, data, max_iter=250, m=2, error=1e-5):
8+
assert m > 1
9+
#assert initial_centers.shape[0] == n_clusters
10+
self.U = None
11+
self.centers = initial_centers
12+
self.max_iter = max_iter
13+
self.m = m
14+
self.error = error
15+
self.data = data
16+
17+
def membership(self, data, centers):
18+
U_temp = cdist(data, centers, 'euclidean')
19+
U_temp = numpy.power(U_temp, 2/(self.m - 1))
20+
denominator_ = U_temp.reshape(
21+
(data.shape[0], 1, -1)).repeat(U_temp.shape[-1], axis=1)
22+
denominator_ = U_temp[:, :, numpy.newaxis] / denominator_
23+
return 1 / denominator_.sum(2)
24+
25+
def Centers(self, data, U):
26+
um = U ** self.m
27+
return (data.T @ um / numpy.sum(um, axis=0)).T
28+
29+
def newImage(self, U, centers, im):
30+
best = numpy.argmax(self.U, axis=-1)
31+
# print(best)
32+
# numpy.round()
33+
image = im.astype(int)
34+
for i in range(256):
35+
image = numpy.where(image == float(i), centers[best[i]][0], image)
36+
return image
37+
38+
def compute(self):
39+
self.U = self.membership(self.data, self.centers)
40+
41+
past_U = numpy.copy(self.U)
42+
begin_time = datetime.datetime.now()
43+
for i in range(self.max_iter):
44+
45+
self.centers = self.Centers(self.data, self.U)
46+
self.U = self.membership(self.data, self.centers)
47+
48+
if norm(self.U - past_U) < self.error:
49+
break
50+
past_U = numpy.copy(self.U)
51+
x = datetime.datetime.now() - begin_time
52+
return self.centers, self.U, x
53+
54+
# that's how you run it, data being your data, and the other parameters being the basic FCM parameters such as numbe rof cluseters, degree of fuzziness and so on
55+
# f = FuzzyCMeans(n_clusters=C, initial_centers=Initial_centers,
56+
# data=data m=2, max_iter=1000, error=1e-5)
57+
# centers, U, time = f.compute()

‎classification/tools.py

Copy file name to clipboard
+20Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
from matplotlib.image import imread
2+
import matplotlib.pyplot as plt
3+
from math import sqrt
4+
import math
5+
import random
6+
import numpy
7+
import operator
8+
from scipy.spatial.distance import cdist
9+
from scipy.linalg import norm
10+
import datetime
11+
12+
13+
def Histogram(path):
14+
image = imread(path)
15+
if len(image.shape) != 2:
16+
def gray(rgb): return numpy.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
17+
gray = gray(image)
18+
image = gray
19+
hist, bins = numpy.histogram(image.ravel(), 256, [0, 256])
20+
return adapt(hist)

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.