Skew-Hermitian matrix
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix.[1] That is, the matrix is skew-Hermitian if it satisfies the relation
where denotes the conjugate transpose of the matrix
. In component form, this means that
for all indices and
, where
is the element in the
-th row and
-th column of
, and the overline denotes complex conjugation.
Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers.[2] The set of all skew-Hermitian matrices forms the
Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm.
Note that the adjoint of an operator depends on the scalar product considered on the dimensional complex or real space
. If
denotes the scalar product on
, then saying
is skew-adjoint means that for all
one has
.
Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators.
Example
[edit]For example, the following matrix is skew-Hermitian
because
Properties
[edit]- The eigenvalues of a skew-Hermitian matrix are all purely imaginary (and possibly zero). Furthermore, skew-Hermitian matrices are normal. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal.[3]
- All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary; i.e., on the imaginary axis (the number zero is also considered purely imaginary).[4]
- If
and
are skew-Hermitian, then
is skew-Hermitian for all real scalars
and
.[5]
is skew-Hermitian if and only if
(or equivalently,
) is Hermitian.[5]
is skew-Hermitian if and only if the real part
is skew-symmetric and the imaginary part
is symmetric.
- If
is skew-Hermitian, then
is Hermitian if
is an even integer and skew-Hermitian if
is an odd integer.
is skew-Hermitian if and only if
for all vectors
.
- If
is skew-Hermitian, then the matrix exponential
is unitary.
- The space of skew-Hermitian matrices forms the Lie algebra
of the Lie group
.
Decomposition into Hermitian and skew-Hermitian
[edit]- The sum of a square matrix and its conjugate transpose
is Hermitian.
- The difference of a square matrix and its conjugate transpose
is skew-Hermitian. This implies that the commutator of two Hermitian matrices is skew-Hermitian.
- An arbitrary square matrix
can be written as the sum of a Hermitian matrix
and a skew-Hermitian matrix
:
See also
[edit]Notes
[edit]- ^ Horn & Johnson (1985), §4.1.1; Meyer (2000), §3.2
- ^ Horn & Johnson (1985), §4.1.2
- ^ Horn & Johnson (1985), §2.5.2, §2.5.4
- ^ Meyer (2000), Exercise 3.2.5
- ^ a b Horn & Johnson (1985), §4.1.1
References
[edit]- Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6.
- Meyer, Carl D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM, ISBN 978-0-89871-454-8.