Jump to content

Neville theta functions

From Wikipedia, the free encyclopedia

In mathematics, the Neville theta functions, named after Eric Harold Neville,[1] are defined as follows:[2][3] [4]

{\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
{\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
{\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
{\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}

where: K(m) is the complete elliptic integral of the first kind, {\displaystyle K'(m)=K(1-m)}, and {\displaystyle q(m)=e^{-\pi K'(m)/K(m)}} is the elliptic nome.

Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST[5]). The functions may also be written in terms of the τ parameter θp(z|τ) where {\displaystyle q=e^{i\pi \tau }}.

Relationship to other functions

[edit]

The Neville theta functions may be expressed in terms of the Jacobi theta functions[5]

{\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )}
{\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )}
{\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )}
{\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )}

where {\displaystyle z'=z/\theta _{3}^{2}(0|\tau )}.

The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

{\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.}

Examples

[edit]
  • {\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967}
  • {\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994}
  • {\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637}
  • {\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536}

Symmetry

[edit]
  • {\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)}
  • {\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)}
  • {\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)}
  • {\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}

Complex 3D plots

[edit]

Notes

[edit]
  1. ^ Abramowitz and Stegun, pp. 578-579
  2. ^ Neville (1944)
  3. ^ The Mathematical Functions Site
  4. ^ The Mathematical Functions Site
  5. ^ a b Olver, F. W. J.; et al., eds. (2017-12-22). "NIST Digital Library of Mathematical Functions (Release 1.0.17)". National Institute of Standards and Technology. Retrieved 2018-02-26.

References

[edit]
Neville theta functions
Morty Proxy This is a proxified and sanitized view of the page, visit original site.