Jump to content

Iwasawa decomposition

From Wikipedia, the free encyclopedia

In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.[1]

Definition

[edit]

Then the Iwasawa decomposition of {\displaystyle {\mathfrak {g}}_{0}} is

{\displaystyle {\mathfrak {g}}_{0}={\mathfrak {k}}_{0}\oplus {\mathfrak {a}}_{0}\oplus {\mathfrak {n}}_{0}}

and the Iwasawa decomposition of G is

{\displaystyle G=KAN}

meaning there is an analytic diffeomorphism (but not a group homomorphism) from the manifold {\displaystyle K\times A\times N} to the Lie group {\displaystyle G}, sending {\displaystyle (k,a,n)\mapsto kan}.

The dimension of A (or equivalently of {\displaystyle {\mathfrak {a}}_{0}}) is equal to the real rank of G.

Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.

The restricted root space decomposition is

{\displaystyle {\mathfrak {g}}_{0}={\mathfrak {m}}_{0}\oplus {\mathfrak {a}}_{0}\oplus _{\lambda \in \Sigma }{\mathfrak {g}}_{\lambda }}

where {\displaystyle {\mathfrak {m}}_{0}} is the centralizer of {\displaystyle {\mathfrak {a}}_{0}} in {\displaystyle {\mathfrak {k}}_{0}} and {\displaystyle {\mathfrak {g}}_{\lambda }=\{X\in {\mathfrak {g}}_{0}:[H,X]=\lambda (H)X\;\;\forall H\in {\mathfrak {a}}_{0}\}} is the root space. The number {\displaystyle m_{\lambda }={\text{dim}}\,{\mathfrak {g}}_{\lambda }} is called the multiplicity of {\displaystyle \lambda }.

Examples

[edit]

If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices with determinant 1, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.

For the case of n = 2, the Iwasawa decomposition of G = SL(2, R) is in terms of

{\displaystyle \mathbf {K} =\left\{{\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ \theta \in \mathbf {R} \right\}\cong SO(2),}
{\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}r&0\\0&r^{-1}\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ r>0\right\},}
{\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}1&x\\0&1\end{pmatrix}}\in SL(2,\mathbb {R} )\ |\ x\in \mathbf {R} \right\}.}

For the symplectic group G = Sp(2n, R), a possible Iwasawa decomposition is in terms of

{\displaystyle \mathbf {K} =Sp(2n,\mathbb {R} )\cap SO(2n)=\left\{{\begin{pmatrix}A&B\\-B&A\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ A+iB\in U(n)\right\}\cong U(n),}
{\displaystyle \mathbf {A} =\left\{{\begin{pmatrix}D&0\\0&D^{-1}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ D{\text{ positive, diagonal}}\right\},}
{\displaystyle \mathbf {N} =\left\{{\begin{pmatrix}N&M\\0&N^{-T}\end{pmatrix}}\in Sp(2n,\mathbb {R} )\ |\ N{\text{ upper triangular with diagonal elements = 1}},\ NM^{T}=MN^{T}\right\}.}

Obtaining the matrices appearing in the decomposition above can be reduced to the calculation of matrix square roots, matrix inverses and performing a QR decomposition.[2]

Non-Archimedean Iwasawa decomposition

[edit]

There is an analog to the above Iwasawa decomposition for a non-Archimedean field {\displaystyle F}: In this case, the group {\displaystyle GL_{n}(F)} can be written as a product of the subgroup of upper-triangular matrices and the (maximal compact) subgroup {\displaystyle GL_{n}(O_{F})}, where {\displaystyle O_{F}} is the ring of integers of {\displaystyle F}.[3]

See also

[edit]

References

[edit]
  1. ^ Iwasawa, Kenkichi (1949). "On Some Types of Topological Groups". Annals of Mathematics. 50 (3): 507–558. doi:10.2307/1969548. JSTOR 1969548.
  2. ^ Houde, Martin; McCutcheon, Will; Quesada, Nicolas (2024). "Matrix decompositions in quantum optics: Takagi/Autonne, Bloch–Messiah/Euler, Iwasawa, and Williamson". Canadian Journal of Physics. 102 (10): 497–597. doi:10.1139/cjp-2024-0070.
  3. ^ Bump, Daniel (1997), Automorphic forms and representations, Cambridge: Cambridge University Press, doi:10.1017/CBO9780511609572, ISBN 0-521-55098-X, Prop. 4.5.2
Iwasawa decomposition
Morty Proxy This is a proxified and sanitized view of the page, visit original site.