Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
JavaScript is disabled in your browser. Please switch it on to enable full functionality of the website
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1971, Volume 5, Issue 3, Pages 547–588
DOI: https://doi.org/10.1070/IM1971v005n03ABEH001075
(Mi im2021)
 

This article is cited in 148 scientific papers (total in 149 papers)

A Torelli theorem for algebraic surfaces of type $K3$

I. I. Pyatetskii-Shapiro, I. R. Shafarevich
References:
Abstract: In this paper it is proved that an algebraic surface of type $K3$ is uniquely determined by prescribing the integrals of its holomorphic differential forms with respect to a basis of cycles of the two-dimensional homology group, if the homology class of a hyperplane section is distinguished.
Received: 26.01.1970
Bibliographic databases:
Document Type: Article
UDC: 513.6
MSC: Primary 14C30, 14D20, 14J10; Secondary 10B10, 14G99
Language: English
Original paper language: Russian
Citation: I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR-Izv., 5:3 (1971), 547–588
Citation in format AMSBIB
\Bibitem{PyaSha71}
\by I.~I.~Pyatetskii-Shapiro, I.~R.~Shafarevich
\paper A~Torelli theorem for algebraic surfaces of type~$K3$
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 3
\pages 547--588
\mathnet{http://mi.mathnet.ru/eng/im2021}
\crossref{https://doi.org/10.1070/IM1971v005n03ABEH001075}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=284440}
\zmath{https://zbmath.org/?q=an:0219.14021}
Linking options:
  • https://www.mathnet.ru/eng/im2021
  • https://doi.org/10.1070/IM1971v005n03ABEH001075
  • https://www.mathnet.ru/eng/im/v35/i3/p530
  • This publication is cited in the following 149 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:3224
    Russian version PDF:981
    English version PDF:185
    References:147
    First page:6
     


    Morty Proxy This is a proxified and sanitized view of the page, visit original site.