| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2003, 2004 Ferdinando Ametrano |
| 5 | Copyright (C) 2003 StatPro Italia srl |
| 6 | Copyright (C) 2005 Gary Kennedy |
| 7 | Copyright (C) 2013 Fabien Le Floc'h |
| 8 | Copyright (C) 2016 Klaus Spanderen |
| 9 | |
| 10 | |
| 11 | This file is part of QuantLib, a free-software/open-source library |
| 12 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 13 | |
| 14 | QuantLib is free software: you can redistribute it and/or modify it |
| 15 | under the terms of the QuantLib license. You should have received a |
| 16 | copy of the license along with this program; if not, please email |
| 17 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 18 | <http://quantlib.org/license.shtml>. |
| 19 | |
| 20 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 21 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 22 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 23 | */ |
| 24 | |
| 25 | #include "distributions.hpp" |
| 26 | #include "utilities.hpp" |
| 27 | #include <ql/math/distributions/normaldistribution.hpp> |
| 28 | #include <ql/math/distributions/bivariatenormaldistribution.hpp> |
| 29 | #include <ql/math/distributions/bivariatestudenttdistribution.hpp> |
| 30 | #include <ql/math/distributions/chisquaredistribution.hpp> |
| 31 | #include <ql/math/distributions/poissondistribution.hpp> |
| 32 | #include <ql/math/randomnumbers/stochasticcollocationinvcdf.hpp> |
| 33 | #include <ql/math/comparison.hpp> |
| 34 | #include <boost/math/distributions/non_central_chi_squared.hpp> |
| 35 | |
| 36 | using namespace QuantLib; |
| 37 | using namespace boost::unit_test_framework; |
| 38 | |
| 39 | namespace distributions_test { |
| 40 | |
| 41 | Real average = 1.0, sigma = 2.0; |
| 42 | |
| 43 | Real gaussian(Real x) { |
| 44 | Real normFact = sigma*std::sqrt(x: 2*M_PI); |
| 45 | Real dx = x-average; |
| 46 | return std::exp(x: -dx*dx/(2.0*sigma*sigma))/normFact; |
| 47 | } |
| 48 | |
| 49 | Real gaussianDerivative(Real x) { |
| 50 | Real normFact = sigma*sigma*sigma*std::sqrt(x: 2*M_PI); |
| 51 | Real dx = x-average; |
| 52 | return -dx*std::exp(x: -dx*dx/(2.0*sigma*sigma))/normFact; |
| 53 | } |
| 54 | |
| 55 | struct BivariateTestData { |
| 56 | Real a; |
| 57 | Real b; |
| 58 | Real rho; |
| 59 | Real result; |
| 60 | }; |
| 61 | |
| 62 | template <class Bivariate> |
| 63 | void checkBivariate(const char* tag) { |
| 64 | |
| 65 | BivariateTestData values[] = { |
| 66 | /* The data below are from |
| 67 | "Option pricing formulas", E.G. Haug, McGraw-Hill 1998 |
| 68 | pag 193 |
| 69 | */ |
| 70 | { .a: 0.0, .b: 0.0, .rho: 0.0, .result: 0.250000 }, |
| 71 | { .a: 0.0, .b: 0.0, .rho: -0.5, .result: 0.166667 }, |
| 72 | { .a: 0.0, .b: 0.0, .rho: 0.5, .result: 1.0/3 }, |
| 73 | { .a: 0.0, .b: -0.5, .rho: 0.0, .result: 0.154269 }, |
| 74 | { .a: 0.0, .b: -0.5, .rho: -0.5, .result: 0.081660 }, |
| 75 | { .a: 0.0, .b: -0.5, .rho: 0.5, .result: 0.226878 }, |
| 76 | { .a: 0.0, .b: 0.5, .rho: 0.0, .result: 0.345731 }, |
| 77 | { .a: 0.0, .b: 0.5, .rho: -0.5, .result: 0.273122 }, |
| 78 | { .a: 0.0, .b: 0.5, .rho: 0.5, .result: 0.418340 }, |
| 79 | |
| 80 | { .a: -0.5, .b: 0.0, .rho: 0.0, .result: 0.154269 }, |
| 81 | { .a: -0.5, .b: 0.0, .rho: -0.5, .result: 0.081660 }, |
| 82 | { .a: -0.5, .b: 0.0, .rho: 0.5, .result: 0.226878 }, |
| 83 | { .a: -0.5, .b: -0.5, .rho: 0.0, .result: 0.095195 }, |
| 84 | { .a: -0.5, .b: -0.5, .rho: -0.5, .result: 0.036298 }, |
| 85 | { .a: -0.5, .b: -0.5, .rho: 0.5, .result: 0.163319 }, |
| 86 | { .a: -0.5, .b: 0.5, .rho: 0.0, .result: 0.213342 }, |
| 87 | { .a: -0.5, .b: 0.5, .rho: -0.5, .result: 0.145218 }, |
| 88 | { .a: -0.5, .b: 0.5, .rho: 0.5, .result: 0.272239 }, |
| 89 | |
| 90 | { .a: 0.5, .b: 0.0, .rho: 0.0, .result: 0.345731 }, |
| 91 | { .a: 0.5, .b: 0.0, .rho: -0.5, .result: 0.273122 }, |
| 92 | { .a: 0.5, .b: 0.0, .rho: 0.5, .result: 0.418340 }, |
| 93 | { .a: 0.5, .b: -0.5, .rho: 0.0, .result: 0.213342 }, |
| 94 | { .a: 0.5, .b: -0.5, .rho: -0.5, .result: 0.145218 }, |
| 95 | { .a: 0.5, .b: -0.5, .rho: 0.5, .result: 0.272239 }, |
| 96 | { .a: 0.5, .b: 0.5, .rho: 0.0, .result: 0.478120 }, |
| 97 | { .a: 0.5, .b: 0.5, .rho: -0.5, .result: 0.419223 }, |
| 98 | { .a: 0.5, .b: 0.5, .rho: 0.5, .result: 0.546244 }, |
| 99 | |
| 100 | // known analytical values |
| 101 | { .a: 0.0, .b: 0.0, .rho: std::sqrt(x: 1/2.0), .result: 3.0/8}, |
| 102 | |
| 103 | // { 0.0, big, any, 0.500000 }, |
| 104 | { .a: 0.0, .b: 30, .rho: -1.0, .result: 0.500000 }, |
| 105 | { .a: 0.0, .b: 30, .rho: 0.0, .result: 0.500000 }, |
| 106 | { .a: 0.0, .b: 30, .rho: 1.0, .result: 0.500000 }, |
| 107 | |
| 108 | // { big, big, any, 1.000000 }, |
| 109 | { .a: 30, .b: 30, .rho: -1.0, .result: 1.000000 }, |
| 110 | { .a: 30, .b: 30, .rho: 0.0, .result: 1.000000 }, |
| 111 | { .a: 30, .b: 30, .rho: 1.0, .result: 1.000000 }, |
| 112 | |
| 113 | // {-big, any, any, 0.000000 } |
| 114 | { .a: -30, .b: -1.0, .rho: -1.0, .result: 0.000000 }, |
| 115 | { .a: -30, .b: 0.0, .rho: -1.0, .result: 0.000000 }, |
| 116 | { .a: -30, .b: 1.0, .rho: -1.0, .result: 0.000000 }, |
| 117 | { .a: -30, .b: -1.0, .rho: 0.0, .result: 0.000000 }, |
| 118 | { .a: -30, .b: 0.0, .rho: 0.0, .result: 0.000000 }, |
| 119 | { .a: -30, .b: 1.0, .rho: 0.0, .result: 0.000000 }, |
| 120 | { .a: -30, .b: -1.0, .rho: 1.0, .result: 0.000000 }, |
| 121 | { .a: -30, .b: 0.0, .rho: 1.0, .result: 0.000000 }, |
| 122 | { .a: -30, .b: 1.0, .rho: 1.0, .result: 0.000000 } |
| 123 | }; |
| 124 | |
| 125 | for (Size i=0; i<LENGTH(values); i++) { |
| 126 | Bivariate bcd(values[i].rho); |
| 127 | Real value = bcd(values[i].a, values[i].b); |
| 128 | |
| 129 | Real tolerance = 1.0e-6; |
| 130 | if (std::fabs(x: value-values[i].result) >= tolerance) { |
| 131 | BOOST_ERROR(tag << " bivariate cumulative distribution\n" |
| 132 | << " case: " << i+1 << "\n" |
| 133 | << std::fixed |
| 134 | << " a: " << values[i].a << "\n" |
| 135 | << " b: " << values[i].b << "\n" |
| 136 | << " rho: " << values[i].rho <<"\n" |
| 137 | << std::scientific |
| 138 | << " tabulated value: " |
| 139 | << values[i].result << "\n" |
| 140 | << " result: " << value); |
| 141 | } |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | template <class Bivariate> |
| 146 | void checkBivariateAtZero(const char* tag, Real tolerance) { |
| 147 | |
| 148 | /* |
| 149 | BVN(0.0,0.0,rho) = 1/4 + arcsin(rho)/(2*M_PI) |
| 150 | "Handbook of the Normal Distribution", |
| 151 | J.K. Patel & C.B.Read, 2nd Ed, 1996 |
| 152 | */ |
| 153 | const Real rho[] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, |
| 154 | 0.6, 0.7, 0.8, 0.9, 0.99999 }; |
| 155 | const Real x(0.0); |
| 156 | const Real y(0.0); |
| 157 | |
| 158 | for (Real i : rho) { |
| 159 | for (Integer sgn=-1; sgn < 2; sgn+=2) { |
| 160 | Bivariate bvn(sgn * i); |
| 161 | Real expected = 0.25 + std::asin(x: sgn * i) / (2 * M_PI); |
| 162 | Real realised = bvn(x,y); |
| 163 | |
| 164 | if (std::fabs(x: realised-expected)>=tolerance) { |
| 165 | BOOST_ERROR(tag << " bivariate cumulative distribution\n" |
| 166 | << std::scientific << " rho: " << sgn * i << "\n" |
| 167 | << " expected: " << expected << "\n" |
| 168 | << " realised: " << realised << "\n" |
| 169 | << " tolerance: " << tolerance); |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | template <class Bivariate> |
| 176 | void checkBivariateTail(const char* tag, Real tolerance) { |
| 177 | |
| 178 | /* make sure numerical greeks are sensible, numerical error in |
| 179 | * the tails can make garbage greeks for partial time barrier |
| 180 | * option */ |
| 181 | Real x = -6.9; |
| 182 | Real y = 6.9; |
| 183 | Real corr = -0.999; |
| 184 | Bivariate bvn(corr); |
| 185 | for (int i = 0; i<10;i++) { |
| 186 | Real cdf0 = bvn(x,y); |
| 187 | y = y + tolerance; |
| 188 | Real cdf1 = bvn(x,y); |
| 189 | if (cdf0 > cdf1) { |
| 190 | BOOST_ERROR(tag << " cdf must be decreasing in the tails\n" |
| 191 | << std::scientific |
| 192 | << " cdf0: " << cdf0 << "\n" |
| 193 | << " cdf1: " << cdf1 << "\n" |
| 194 | << " x: " << x << "\n" |
| 195 | << " y: " << y << "\n" |
| 196 | << " rho: " << corr); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | struct BivariateStudentTestData { |
| 202 | Natural n; |
| 203 | Real rho; |
| 204 | Real x; |
| 205 | Real y; |
| 206 | Real result; |
| 207 | }; |
| 208 | |
| 209 | } |
| 210 | |
| 211 | void DistributionTest::testNormal() { |
| 212 | |
| 213 | BOOST_TEST_MESSAGE("Testing normal distributions..." ); |
| 214 | |
| 215 | using namespace distributions_test; |
| 216 | |
| 217 | InverseCumulativeNormal invCumStandardNormal; |
| 218 | Real check = invCumStandardNormal(0.5); |
| 219 | if (check != 0.0e0) { |
| 220 | BOOST_ERROR("C++ inverse cumulative of the standard normal at 0.5 is " |
| 221 | << std::scientific << check |
| 222 | << "\n instead of zero: something is wrong!" ); |
| 223 | } |
| 224 | |
| 225 | NormalDistribution normal(average,sigma); |
| 226 | CumulativeNormalDistribution cum(average,sigma); |
| 227 | InverseCumulativeNormal invCum(average,sigma); |
| 228 | |
| 229 | Size numberOfStandardDeviation = 6; |
| 230 | Real xMin = average - numberOfStandardDeviation*sigma, |
| 231 | xMax = average + numberOfStandardDeviation*sigma; |
| 232 | Size N = 100001; |
| 233 | Real h = (xMax-xMin)/(N-1); |
| 234 | |
| 235 | std::vector<Real> x(N), y(N), yd(N), temp(N), diff(N); |
| 236 | |
| 237 | Size i; |
| 238 | for (i=0; i<N; i++) |
| 239 | x[i] = xMin+h*i; |
| 240 | std::transform(first: x.begin(), last: x.end(), result: y.begin(), unary_op: gaussian); |
| 241 | std::transform(first: x.begin(), last: x.end(), result: yd.begin(), unary_op: gaussianDerivative); |
| 242 | |
| 243 | // check that normal = Gaussian |
| 244 | std::transform(first: x.begin(), last: x.end(), result: temp.begin(), unary_op: normal); |
| 245 | std::transform(first1: y.begin(), last1: y.end(), first2: temp.begin(), result: diff.begin(), binary_op: std::minus<>()); |
| 246 | Real e = norm(begin: diff.begin(), end: diff.end(), h); |
| 247 | if (e > 1.0e-16) { |
| 248 | BOOST_ERROR("norm of C++ NormalDistribution minus analytic Gaussian: " |
| 249 | << std::scientific << e << "\n" |
| 250 | << "tolerance exceeded" ); |
| 251 | } |
| 252 | |
| 253 | // check that invCum . cum = identity |
| 254 | std::transform(first: x.begin(), last: x.end(), result: temp.begin(), unary_op: cum); |
| 255 | std::transform(first: temp.begin(), last: temp.end(), result: temp.begin(), unary_op: invCum); |
| 256 | std::transform(first1: x.begin(), last1: x.end(), first2: temp.begin(), result: diff.begin(), binary_op: std::minus<>()); |
| 257 | e = norm(begin: diff.begin(), end: diff.end(), h); |
| 258 | if (e > 1.0e-7) { |
| 259 | BOOST_ERROR("norm of invCum . cum minus identity: " |
| 260 | << std::scientific << e << "\n" |
| 261 | << "tolerance exceeded" ); |
| 262 | } |
| 263 | |
| 264 | MaddockInverseCumulativeNormal mInvCum(average, sigma); |
| 265 | std::transform(first: x.begin(), last: x.end(), result: diff.begin(), |
| 266 | unary_op: [&](Real x) -> Real { |
| 267 | return x - mInvCum(cum(x)); |
| 268 | }); |
| 269 | |
| 270 | e = norm(begin: diff.begin(), end: diff.end(), h); |
| 271 | if (e > 1.0e-7) { |
| 272 | BOOST_ERROR("norm of MaddokInvCum . cum minus identity: " |
| 273 | << std::scientific << e << "\n" |
| 274 | << "tolerance exceeded" ); |
| 275 | } |
| 276 | |
| 277 | // check that cum.derivative = Gaussian |
| 278 | for (i=0; i<x.size(); i++) |
| 279 | temp[i] = cum.derivative(x: x[i]); |
| 280 | std::transform(first1: y.begin(), last1: y.end(), first2: temp.begin(), result: diff.begin(), binary_op: std::minus<>()); |
| 281 | e = norm(begin: diff.begin(), end: diff.end(), h); |
| 282 | if (e > 1.0e-16) { |
| 283 | BOOST_ERROR( |
| 284 | "norm of C++ Cumulative.derivative minus analytic Gaussian: " |
| 285 | << std::scientific << e << "\n" |
| 286 | << "tolerance exceeded" ); |
| 287 | } |
| 288 | |
| 289 | // check that normal.derivative = gaussianDerivative |
| 290 | for (i=0; i<x.size(); i++) |
| 291 | temp[i] = normal.derivative(x: x[i]); |
| 292 | std::transform(first1: yd.begin(), last1: yd.end(), first2: temp.begin(), result: diff.begin(), binary_op: std::minus<>()); |
| 293 | e = norm(begin: diff.begin(), end: diff.end(), h); |
| 294 | if (e > 1.0e-16) { |
| 295 | BOOST_ERROR("norm of C++ Normal.derivative minus analytic derivative: " |
| 296 | << std::scientific << e << "\n" |
| 297 | << "tolerance exceeded" ); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | void DistributionTest::testBivariate() { |
| 302 | |
| 303 | BOOST_TEST_MESSAGE("Testing bivariate cumulative normal distribution..." ); |
| 304 | |
| 305 | using namespace distributions_test; |
| 306 | |
| 307 | checkBivariateAtZero<BivariateCumulativeNormalDistributionDr78>( |
| 308 | tag: "Drezner 1978" , tolerance: 1.0e-6); |
| 309 | checkBivariate<BivariateCumulativeNormalDistributionDr78>(tag: "Drezner 1978" ); |
| 310 | |
| 311 | // due to relative low accuracy of Dr78, it does not pass with a |
| 312 | // smaller perturbation |
| 313 | checkBivariateTail<BivariateCumulativeNormalDistributionDr78>( |
| 314 | tag: "Drezner 1978" , tolerance: 1.0e-5); |
| 315 | |
| 316 | checkBivariateAtZero<BivariateCumulativeNormalDistributionWe04DP>( |
| 317 | tag: "West 2004" , tolerance: 1.0e-15); |
| 318 | checkBivariate<BivariateCumulativeNormalDistributionWe04DP>(tag: "West 2004" ); |
| 319 | |
| 320 | checkBivariateTail<BivariateCumulativeNormalDistributionWe04DP>( |
| 321 | tag: "West 2004" , tolerance: 1.0e-6); |
| 322 | checkBivariateTail<BivariateCumulativeNormalDistributionWe04DP>( |
| 323 | tag: "West 2004" , tolerance: 1.0e-8); |
| 324 | } |
| 325 | |
| 326 | |
| 327 | void DistributionTest::testPoisson() { |
| 328 | |
| 329 | BOOST_TEST_MESSAGE("Testing Poisson distribution..." ); |
| 330 | |
| 331 | for (Real mean=0.0; mean<=10.0; mean+=0.5) { |
| 332 | BigNatural i = 0; |
| 333 | PoissonDistribution pdf(mean); |
| 334 | Real calculated = pdf(i); |
| 335 | Real logHelper = -mean; |
| 336 | Real expected = std::exp(x: logHelper); |
| 337 | Real error = std::fabs(x: calculated-expected); |
| 338 | if (error > 1.0e-16) |
| 339 | BOOST_ERROR("Poisson pdf(" << mean << ")(" << i << ")\n" |
| 340 | << std::setprecision(16) |
| 341 | << " calculated: " << calculated << "\n" |
| 342 | << " expected: " << expected << "\n" |
| 343 | << " error: " << error); |
| 344 | |
| 345 | for (i=1; i<25; i++) { |
| 346 | calculated = pdf(i); |
| 347 | if (mean == 0.0) { |
| 348 | expected = 0.0; |
| 349 | } else { |
| 350 | logHelper = logHelper+std::log(x: mean)-std::log(x: Real(i)); |
| 351 | expected = std::exp(x: logHelper); |
| 352 | } |
| 353 | error = std::fabs(x: calculated-expected); |
| 354 | if (error>1.0e-13) |
| 355 | BOOST_ERROR("Poisson pdf(" << mean << ")(" << i << ")\n" |
| 356 | << std::setprecision(13) |
| 357 | << " calculated: " << calculated << "\n" |
| 358 | << " expected: " << expected << "\n" |
| 359 | << " error: " << error); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | void DistributionTest::testCumulativePoisson() { |
| 365 | |
| 366 | BOOST_TEST_MESSAGE("Testing cumulative Poisson distribution..." ); |
| 367 | |
| 368 | for (Real mean=0.0; mean<=10.0; mean+=0.5) { |
| 369 | BigNatural i = 0; |
| 370 | CumulativePoissonDistribution cdf(mean); |
| 371 | Real cumCalculated = cdf(i); |
| 372 | Real logHelper = -mean; |
| 373 | Real cumExpected = std::exp(x: logHelper); |
| 374 | Real error = std::fabs(x: cumCalculated-cumExpected); |
| 375 | if (error>1.0e-13) |
| 376 | BOOST_ERROR("Poisson cdf(" << mean << ")(" << i << ")\n" |
| 377 | << std::setprecision(13) |
| 378 | << " calculated: " << cumCalculated << "\n" |
| 379 | << " expected: " << cumExpected << "\n" |
| 380 | << " error: " << error); |
| 381 | for (i=1; i<25; i++) { |
| 382 | cumCalculated = cdf(i); |
| 383 | if (mean == 0.0) { |
| 384 | cumExpected = 1.0; |
| 385 | } else { |
| 386 | logHelper = logHelper+std::log(x: mean)-std::log(x: Real(i)); |
| 387 | cumExpected += std::exp(x: logHelper); |
| 388 | } |
| 389 | error = std::fabs(x: cumCalculated-cumExpected); |
| 390 | if (error>1.0e-12) |
| 391 | BOOST_ERROR("Poisson cdf(" << mean << ")(" << i << ")\n" |
| 392 | << std::setprecision(12) |
| 393 | << " calculated: " << cumCalculated << "\n" |
| 394 | << " expected: " << cumExpected << "\n" |
| 395 | << " error: " << error); |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | void DistributionTest::testInverseCumulativePoisson() { |
| 401 | |
| 402 | BOOST_TEST_MESSAGE("Testing inverse cumulative Poisson distribution..." ); |
| 403 | |
| 404 | InverseCumulativePoisson icp(1.0); |
| 405 | |
| 406 | Real data[] = { 0.2, |
| 407 | 0.5, |
| 408 | 0.9, |
| 409 | 0.98, |
| 410 | 0.99, |
| 411 | 0.999, |
| 412 | 0.9999, |
| 413 | 0.99995, |
| 414 | 0.99999, |
| 415 | 0.999999, |
| 416 | 0.9999999, |
| 417 | 0.99999999 |
| 418 | }; |
| 419 | |
| 420 | for (Size i=0; i<LENGTH(data); i++) { |
| 421 | if (!close(x: icp(data[i]), y: static_cast<Real>(i))) { |
| 422 | BOOST_ERROR(std::setprecision(8) |
| 423 | << "failed to reproduce known value for x = " |
| 424 | << data[i] << "\n" |
| 425 | << " calculated: " << icp(data[i]) << "\n" |
| 426 | << " expected: " << Real(i)); |
| 427 | } |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | |
| 432 | void DistributionTest::testBivariateCumulativeStudent() { |
| 433 | BOOST_TEST_MESSAGE( |
| 434 | "Testing bivariate cumulative Student t distribution..." ); |
| 435 | |
| 436 | using namespace distributions_test; |
| 437 | |
| 438 | Real xs[14] = { 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00 }; |
| 439 | Natural ns[20] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 60, 90, 120, 150, 300, 600 }; |
| 440 | // Part of table 1 from the reference paper |
| 441 | Real expected1[280] = { |
| 442 | 0.33333, 0.50000, 0.63497, 0.72338, 0.78063, 0.81943, 0.84704, 0.88332, 0.90590, 0.92124, 0.93231, 0.94066, 0.94719, 0.95243, |
| 443 | 0.33333, 0.52017, 0.68114, 0.78925, 0.85607, 0.89754, 0.92417, 0.95433, 0.96978, 0.97862, 0.98411, 0.98774, 0.99026, 0.99208, |
| 444 | 0.33333, 0.52818, 0.70018, 0.81702, 0.88720, 0.92812, 0.95238, 0.97667, 0.98712, 0.99222, 0.99497, 0.99657, 0.99756, 0.99821, |
| 445 | 0.33333, 0.53245, 0.71052, 0.83231, 0.90402, 0.94394, 0.96612, 0.98616, 0.99353, 0.99664, 0.99810, 0.99885, 0.99927, 0.99951, |
| 446 | 0.33333, 0.53510, 0.71701, 0.84196, 0.91449, 0.95344, 0.97397, 0.99095, 0.99637, 0.99836, 0.99918, 0.99956, 0.99975, 0.99985, |
| 447 | 0.33333, 0.53689, 0.72146, 0.84862, 0.92163, 0.95972, 0.97893, 0.99365, 0.99779, 0.99913, 0.99962, 0.99982, 0.99990, 0.99995, |
| 448 | 0.33333, 0.53819, 0.72470, 0.85348, 0.92679, 0.96415, 0.98230, 0.99531, 0.99857, 0.99950, 0.99981, 0.99992, 0.99996, 0.99998, |
| 449 | 0.33333, 0.53917, 0.72716, 0.85719, 0.93070, 0.96743, 0.98470, 0.99639, 0.99903, 0.99970, 0.99990, 0.99996, 0.99998, 0.99999, |
| 450 | 0.33333, 0.53994, 0.72909, 0.86011, 0.93375, 0.96995, 0.98650, 0.99713, 0.99931, 0.99981, 0.99994, 0.99998, 0.99999, 1.00000, |
| 451 | 0.33333, 0.54056, 0.73065, 0.86247, 0.93621, 0.97194, 0.98788, 0.99766, 0.99950, 0.99988, 0.99996, 0.99999, 1.00000, 1.00000, |
| 452 | 0.33333, 0.54243, 0.73540, 0.86968, 0.94362, 0.97774, 0.99168, 0.99890, 0.99985, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, |
| 453 | 0.33333, 0.54338, 0.73781, 0.87336, 0.94735, 0.98053, 0.99337, 0.99932, 0.99993, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, |
| 454 | 0.33333, 0.54395, 0.73927, 0.87560, 0.94959, 0.98216, 0.99430, 0.99952, 0.99996, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 455 | 0.33333, 0.54433, 0.74025, 0.87709, 0.95108, 0.98322, 0.99489, 0.99963, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 456 | 0.33333, 0.54528, 0.74271, 0.88087, 0.95482, 0.98580, 0.99623, 0.99983, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 457 | 0.33333, 0.54560, 0.74354, 0.88215, 0.95607, 0.98663, 0.99664, 0.99987, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 458 | 0.33333, 0.54576, 0.74396, 0.88279, 0.95669, 0.98704, 0.99683, 0.99989, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 459 | 0.33333, 0.54586, 0.74420, 0.88317, 0.95706, 0.98729, 0.99695, 0.99990, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 460 | 0.33333, 0.54605, 0.74470, 0.88394, 0.95781, 0.98777, 0.99717, 0.99992, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 461 | 0.33333, 0.54615, 0.74495, 0.88432, 0.95818, 0.98801, 0.99728, 0.99993, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 |
| 462 | }; |
| 463 | // Part of table 2 from the reference paper |
| 464 | Real expected2[280] = { |
| 465 | 0.16667, 0.36554, 0.54022, 0.65333, 0.72582, 0.77465, 0.80928, 0.85466, 0.88284, 0.90196, 0.91575, 0.92616, 0.93429, 0.94081, |
| 466 | 0.16667, 0.38889, 0.59968, 0.73892, 0.82320, 0.87479, 0.90763, 0.94458, 0.96339, 0.97412, 0.98078, 0.98518, 0.98823, 0.99044, |
| 467 | 0.16667, 0.39817, 0.62478, 0.77566, 0.86365, 0.91391, 0.94330, 0.97241, 0.98483, 0.99086, 0.99410, 0.99598, 0.99714, 0.99790, |
| 468 | 0.16667, 0.40313, 0.63863, 0.79605, 0.88547, 0.93396, 0.96043, 0.98400, 0.99256, 0.99614, 0.99782, 0.99868, 0.99916, 0.99944, |
| 469 | 0.16667, 0.40620, 0.64740, 0.80900, 0.89902, 0.94588, 0.97007, 0.98972, 0.99591, 0.99816, 0.99909, 0.99951, 0.99972, 0.99983, |
| 470 | 0.16667, 0.40829, 0.65345, 0.81794, 0.90820, 0.95368, 0.97607, 0.99290, 0.99755, 0.99904, 0.99958, 0.99980, 0.99989, 0.99994, |
| 471 | 0.16667, 0.40980, 0.65788, 0.82449, 0.91482, 0.95914, 0.98010, 0.99482, 0.99844, 0.99946, 0.99979, 0.99991, 0.99996, 0.99998, |
| 472 | 0.16667, 0.41095, 0.66126, 0.82948, 0.91981, 0.96314, 0.98295, 0.99605, 0.99895, 0.99968, 0.99989, 0.99996, 0.99998, 0.99999, |
| 473 | 0.16667, 0.41185, 0.66393, 0.83342, 0.92369, 0.96619, 0.98506, 0.99689, 0.99926, 0.99980, 0.99994, 0.99998, 0.99999, 1.00000, |
| 474 | 0.16667, 0.41257, 0.66608, 0.83661, 0.92681, 0.96859, 0.98667, 0.99748, 0.99946, 0.99987, 0.99996, 0.99999, 1.00000, 1.00000, |
| 475 | 0.16667, 0.41476, 0.67268, 0.84633, 0.93614, 0.97550, 0.99103, 0.99884, 0.99984, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, |
| 476 | 0.16667, 0.41586, 0.67605, 0.85129, 0.94078, 0.97877, 0.99292, 0.99930, 0.99993, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, |
| 477 | 0.16667, 0.41653, 0.67810, 0.85430, 0.94356, 0.98066, 0.99396, 0.99950, 0.99996, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 478 | 0.16667, 0.41698, 0.67947, 0.85632, 0.94540, 0.98189, 0.99461, 0.99962, 0.99998, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 479 | 0.16667, 0.41810, 0.68294, 0.86141, 0.94998, 0.98483, 0.99607, 0.99982, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 480 | 0.16667, 0.41847, 0.68411, 0.86312, 0.95149, 0.98577, 0.99651, 0.99987, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 481 | 0.16667, 0.41866, 0.68470, 0.86398, 0.95225, 0.98623, 0.99672, 0.99989, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 482 | 0.16667, 0.41877, 0.68505, 0.86449, 0.95270, 0.98650, 0.99684, 0.99990, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 483 | 0.16667, 0.41900, 0.68576, 0.86552, 0.95360, 0.98705, 0.99707, 0.99992, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, |
| 484 | 0.16667, 0.41911, 0.68612, 0.86604, 0.95405, 0.98731, 0.99719, 0.99993, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 |
| 485 | }; |
| 486 | |
| 487 | Real tolerance = 1.0e-5; |
| 488 | for (Size i=0; i < LENGTH(ns); ++i) { |
| 489 | BivariateCumulativeStudentDistribution f1(ns[i], 0.5); |
| 490 | BivariateCumulativeStudentDistribution f2(ns[i], -0.5); |
| 491 | for (Size j=0; j < LENGTH(xs); ++j) { |
| 492 | Real calculated1 = f1(xs[j], xs[j]); |
| 493 | Real reference1 = expected1[i*LENGTH(xs)+j]; |
| 494 | Real calculated2 = f2(xs[j], xs[j]); |
| 495 | Real reference2 = expected2[i*LENGTH(xs)+j]; |
| 496 | if (std::fabs(x: calculated1 - reference1) > tolerance) |
| 497 | BOOST_ERROR("Failed to reproduce CDF value at " << xs[j] << |
| 498 | "\n calculated: " << calculated1 << |
| 499 | "\n expected: " << reference1); |
| 500 | if (std::fabs(x: calculated2 - reference2) > tolerance) |
| 501 | BOOST_ERROR("Failed to reproduce CDF value at " << xs[j] << |
| 502 | "\n calculated: " << calculated2 << |
| 503 | "\n expected: " << reference1); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | // a few more random cases |
| 508 | BivariateStudentTestData cases[] = { |
| 509 | {.n: 2, .rho: -1.0, .x: 5.0, .y: 8.0, .result: 0.973491}, |
| 510 | {.n: 2, .rho: 1.0, .x: -2.0, .y: 8.0, .result: 0.091752}, |
| 511 | {.n: 2, .rho: 1.0, .x: 5.25, .y: -9.5, .result: 0.005450}, |
| 512 | {.n: 3, .rho: -0.5, .x: -5.0, .y: -5.0, .result: 0.000220}, |
| 513 | {.n: 4, .rho: -1.0, .x: -8.0, .y: 7.5, .result: 0.0}, |
| 514 | {.n: 4, .rho: 0.5, .x: -5.5, .y: 10.0, .result: 0.002655}, |
| 515 | {.n: 4, .rho: 1.0, .x: -5.0, .y: 6.0, .result: 0.003745}, |
| 516 | {.n: 4, .rho: 1.0, .x: 6.0, .y: 5.5, .result: 0.997336}, |
| 517 | {.n: 5, .rho: -0.5, .x: -7.0, .y: -6.25, .result: 0.000004}, |
| 518 | {.n: 5, .rho: -0.5, .x: 3.75, .y: -7.25, .result: 0.000166}, |
| 519 | {.n: 5, .rho: -0.5, .x: 7.75, .y: -1.25, .result: 0.133073}, |
| 520 | {.n: 6, .rho: 0.0, .x: 7.5, .y: 3.25, .result: 0.991149}, |
| 521 | {.n: 7, .rho: -0.5, .x: -1.0, .y: -8.5, .result: 0.000001}, |
| 522 | {.n: 7, .rho: -1.0, .x: -4.25, .y: -4.0, .result: 0.0}, |
| 523 | {.n: 7, .rho: 0.0, .x: 0.5, .y: -2.25, .result: 0.018819}, |
| 524 | {.n: 8, .rho: -1.0, .x: 8.25, .y: 1.75, .result: 0.940866}, |
| 525 | {.n: 8, .rho: 0.0, .x: 2.25, .y: 4.75, .result: 0.972105}, |
| 526 | {.n: 9, .rho: -0.5, .x: -4.0, .y: 8.25, .result: 0.001550}, |
| 527 | {.n: 9, .rho: -1.0, .x: -1.25, .y: -8.75, .result: 0.0}, |
| 528 | {.n: 9, .rho: -1.0, .x: 5.75, .y: -6.0, .result: 0.0}, |
| 529 | {.n: 9, .rho: 0.5, .x: -6.5, .y: -9.5, .result: 0.000001}, |
| 530 | {.n: 9, .rho: 1.0, .x: -2.0, .y: 9.25, .result: 0.038276}, |
| 531 | {.n: 10, .rho: -1.0, .x: -0.5, .y: 6.0, .result: 0.313881}, |
| 532 | {.n: 10, .rho: 0.5, .x: 0.0, .y: 9.25, .result: 0.5}, |
| 533 | {.n: 10, .rho: 0.5, .x: 6.75, .y: -2.25, .result: 0.024090}, |
| 534 | {.n: 10, .rho: 1.0, .x: -1.75, .y: -1.0, .result: 0.055341}, |
| 535 | {.n: 15, .rho: 0.0, .x: -1.25, .y: -4.75, .result: 0.000029}, |
| 536 | {.n: 15, .rho: 0.0, .x: -2.0, .y: -1.5, .result: 0.003411}, |
| 537 | {.n: 15, .rho: 0.5, .x: 3.0, .y: -3.25, .result: 0.002691}, |
| 538 | {.n: 20, .rho: -0.5, .x: 2.0, .y: -1.25, .result: 0.098333}, |
| 539 | {.n: 20, .rho: -1.0, .x: 3.0, .y: 8.0, .result: 0.996462}, |
| 540 | {.n: 20, .rho: 0.0, .x: -7.5, .y: 1.5, .result: 0.0}, |
| 541 | {.n: 20, .rho: 0.5, .x: 1.25, .y: 9.75, .result: 0.887136}, |
| 542 | {.n: 25, .rho: -1.0, .x: -4.25, .y: 5.0, .result: 0.000111}, |
| 543 | {.n: 25, .rho: 0.5, .x: 9.5, .y: -1.5, .result: 0.073069}, |
| 544 | {.n: 25, .rho: 1.0, .x: -6.5, .y: -3.25, .result: 0.0}, |
| 545 | {.n: 30, .rho: -1.0, .x: -7.75, .y: 10.0, .result: 0.0}, |
| 546 | {.n: 30, .rho: 1.0, .x: 0.5, .y: 9.5, .result: 0.689638}, |
| 547 | {.n: 60, .rho: -1.0, .x: -3.5, .y: -8.25, .result: 0.0}, |
| 548 | {.n: 60, .rho: -1.0, .x: 4.25, .y: 0.75, .result: 0.771869}, |
| 549 | {.n: 60, .rho: -1.0, .x: 5.75, .y: 3.75, .result: 0.9998}, |
| 550 | {.n: 60, .rho: 0.5, .x: -4.5, .y: 8.25, .result: 0.000016}, |
| 551 | {.n: 60, .rho: 1.0, .x: 6.5, .y: -4.0, .result: 0.000088}, |
| 552 | {.n: 90, .rho: -0.5, .x: -3.75, .y: -2.75, .result: 0.0}, |
| 553 | {.n: 90, .rho: 0.5, .x: 8.75, .y: -7.0, .result: 0.0}, |
| 554 | {.n: 120, .rho: 0.0, .x: -3.5, .y: -9.25, .result: 0.0}, |
| 555 | {.n: 120, .rho: 0.0, .x: -8.25, .y: 5.0, .result: 0.0}, |
| 556 | {.n: 120, .rho: 1.0, .x: -0.75, .y: 3.75, .result: 0.227361}, |
| 557 | {.n: 120, .rho: 1.0, .x: -3.5, .y: -8.0, .result: 0.0}, |
| 558 | {.n: 150, .rho: 0.0, .x: 10.0, .y: -1.75, .result: 0.041082}, |
| 559 | {.n: 300, .rho: -0.5, .x: -6.0, .y: 3.75, .result: 0.0}, |
| 560 | {.n: 300, .rho: -0.5, .x: 3.5, .y: -4.5, .result: 0.000004}, |
| 561 | {.n: 300, .rho: 0.0, .x: 6.5, .y: -5.0, .result: 0.0}, |
| 562 | {.n: 600, .rho: -0.5, .x: 9.25, .y: 1.5, .result: 0.93293}, |
| 563 | {.n: 600, .rho: -1.0, .x: -9.25, .y: 1.5, .result: 0.0}, |
| 564 | {.n: 600, .rho: 0.5, .x: -5.0, .y: 8.0, .result: 0.0}, |
| 565 | {.n: 600, .rho: 1.0, .x: -2.75, .y: -9.0, .result: 0.0}, |
| 566 | {.n: 1000, .rho: -0.5, .x: -2.5, .y: 0.25, .result: 0.000589}, |
| 567 | {.n: 1000, .rho: -0.5, .x: 3.0, .y: 1.0, .result: 0.839842}, |
| 568 | {.n: 2000, .rho: -1.0, .x: 9.0, .y: -4.75, .result: 0.000001}, |
| 569 | {.n: 2000, .rho: 0.5, .x: 9.75, .y: 7.25, .result: 1.0}, |
| 570 | {.n: 2000, .rho: 1.0, .x: 0.75, .y: -9.0, .result: 0.0}, |
| 571 | {.n: 5000, .rho: -0.5, .x: 9.75, .y: 5.5, .result: 1.0}, |
| 572 | {.n: 5000, .rho: -1.0, .x: 6.0, .y: 1.0, .result: 0.841321}, |
| 573 | {.n: 5000, .rho: 1.0, .x: 4.0, .y: -7.75, .result: 0.0}, |
| 574 | {.n: 10000, .rho: 0.5, .x: 1.5, .y: 6.0, .result: 0.933177} |
| 575 | }; |
| 576 | |
| 577 | tolerance = 1.0e-6; |
| 578 | for (auto& i : cases) { |
| 579 | BivariateCumulativeStudentDistribution f(i.n, i.rho); |
| 580 | Real calculated = f(i.x, i.y); |
| 581 | Real expected = i.result; |
| 582 | if (std::fabs(x: calculated - expected) > tolerance) |
| 583 | BOOST_ERROR("Failed to reproduce CDF value:" |
| 584 | << "\n n: " << i.n << "\n rho: " << i.rho << "\n x: " << i.x |
| 585 | << "\n y: " << i.y << "\n calculated: " << calculated |
| 586 | << "\n expected: " << expected); |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | void DistributionTest::testBivariateCumulativeStudentVsBivariate() { |
| 591 | BOOST_TEST_MESSAGE( |
| 592 | "Testing bivariate cumulative Student t distribution for large N..." ); |
| 593 | |
| 594 | Natural n = 10000; // for this value, the distribution should be |
| 595 | // close to a bivariate normal distribution. |
| 596 | |
| 597 | for (Real rho = -1.0; rho < 1.01; rho += 0.25) { |
| 598 | BivariateCumulativeStudentDistribution T(n, rho); |
| 599 | BivariateCumulativeNormalDistribution N(rho); |
| 600 | |
| 601 | Real avgDiff = 0.0; |
| 602 | Size m = 0; |
| 603 | Real tolerance = 4.0e-5; |
| 604 | for (Real x = -10; x < 10.1; x += 0.5) { |
| 605 | for (Real y = -10; y < 10.1; y += 0.5) { |
| 606 | Real calculated = T(x, y); |
| 607 | Real expected = N(x, y); |
| 608 | Real diff = std::fabs(x: calculated - expected); |
| 609 | if (diff > tolerance) |
| 610 | BOOST_ERROR("Failed to reproduce limit value:" << |
| 611 | "\n rho: " << rho << |
| 612 | "\n x: " << x << |
| 613 | "\n y: " << y << |
| 614 | "\n calculated: " << calculated << |
| 615 | "\n expected: " << expected); |
| 616 | |
| 617 | avgDiff += diff; |
| 618 | ++m; |
| 619 | } |
| 620 | } |
| 621 | avgDiff /= m; |
| 622 | if (avgDiff > 3.0e-6) |
| 623 | BOOST_ERROR("Failed to reproduce average limit value:" << |
| 624 | "\n rho: " << rho << |
| 625 | "\n average error: " << avgDiff); |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | |
| 630 | namespace distributions_test { |
| 631 | class InverseNonCentralChiSquared { |
| 632 | public: |
| 633 | InverseNonCentralChiSquared(Real df, Real ncp) |
| 634 | : dist_(df, ncp) {} |
| 635 | |
| 636 | Real operator()(Real x) const { |
| 637 | return boost::math::quantile(dist: dist_, p: x); |
| 638 | } |
| 639 | private: |
| 640 | const boost::math::non_central_chi_squared_distribution<Real> dist_; |
| 641 | }; |
| 642 | } |
| 643 | |
| 644 | void DistributionTest::testInvCDFviaStochasticCollocation() { |
| 645 | BOOST_TEST_MESSAGE( |
| 646 | "Testing inverse CDF based on stochastic collocation..." ); |
| 647 | |
| 648 | using namespace distributions_test; |
| 649 | |
| 650 | const Real k = 3.0; |
| 651 | const Real lambda = 1.0; |
| 652 | |
| 653 | const InverseCumulativeNormal invNormalCDF; |
| 654 | const CumulativeNormalDistribution normalCDF; |
| 655 | const InverseNonCentralChiSquared invCDF(k, lambda); |
| 656 | |
| 657 | const StochasticCollocationInvCDF scInvCDF10(invCDF, 10); |
| 658 | |
| 659 | // low precision |
| 660 | for (Real x=-3.0; x < 3.0; x+=0.1) { |
| 661 | const Real u = normalCDF(x); |
| 662 | |
| 663 | const Real calculated1 = scInvCDF10(u); |
| 664 | const Real calculated2 = scInvCDF10.value(x); |
| 665 | const Real expected = invCDF(u); |
| 666 | |
| 667 | if (std::fabs(x: calculated1 - calculated2) > 1e-6) { |
| 668 | BOOST_FAIL("Failed to reproduce equal stochastic collocation " |
| 669 | "inverse CDF" << |
| 670 | "\n x: " << x << |
| 671 | "\n calculated via normal distribution : " |
| 672 | << calculated2 << |
| 673 | "\n calculated via uniform distribution: " |
| 674 | << calculated1 << |
| 675 | "\n diff: " << calculated1 - calculated2); |
| 676 | } |
| 677 | |
| 678 | const Real tol = 1e-2; |
| 679 | if (std::fabs(x: calculated2 - expected) > tol) { |
| 680 | BOOST_FAIL("Failed to reproduce invCDF with " |
| 681 | "stochastic collocation method" << |
| 682 | "\n x: " << x << |
| 683 | "\n invCDF :" << expected << |
| 684 | "\n scInvCDF: " << calculated2 << |
| 685 | "\n diff : " << std::fabs(expected-calculated2) << |
| 686 | "\n tol : " << tol); |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | // high precision |
| 691 | const StochasticCollocationInvCDF scInvCDF30(invCDF, 30, 0.9999999); |
| 692 | for (Real x=-4.0; x < 4.0; x+=0.1) { |
| 693 | const Real u = normalCDF(x); |
| 694 | |
| 695 | const Real expected = invCDF(u); |
| 696 | const Real calculated = scInvCDF30(u); |
| 697 | |
| 698 | const Real tol = 1e-6; |
| 699 | if (std::fabs(x: calculated - expected) > tol) { |
| 700 | BOOST_FAIL("Failed to reproduce invCDF with " |
| 701 | "stochastic collocation method" << |
| 702 | "\n x: " << x << |
| 703 | "\n invCDF :" << expected << |
| 704 | "\n scInvCDF: " << calculated << |
| 705 | "\n diff : " << std::fabs(expected-calculated) << |
| 706 | "\n tol : " << tol); |
| 707 | } |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | void DistributionTest::testSankaranApproximation() { |
| 712 | BOOST_TEST_MESSAGE("Testing Sankaran approximation for the " |
| 713 | "non-central cumulative chi-square distribution..." ); |
| 714 | |
| 715 | const Real dfs[] = {2,2,2,4,4}; |
| 716 | const Real ncps[] = {1,2,3,1,2,3}; |
| 717 | |
| 718 | const Real tol = 0.01; |
| 719 | for (Real df : dfs) { |
| 720 | for (Real ncp : ncps) { |
| 721 | const NonCentralCumulativeChiSquareDistribution d(df, ncp); |
| 722 | const NonCentralCumulativeChiSquareSankaranApprox sankaran(df, ncp); |
| 723 | |
| 724 | for (Real x=0.25; x < 10; x+=0.1) { |
| 725 | const Real expected = d(x); |
| 726 | const Real calculated = sankaran(x); |
| 727 | const Real diff = std::fabs(x: expected - calculated); |
| 728 | |
| 729 | if (diff > tol) { |
| 730 | BOOST_ERROR("Failed to match accuracy of Sankaran approximation" "" |
| 731 | "\n df : " << df << |
| 732 | "\n ncp : " << ncp << |
| 733 | "\n x : " << x << |
| 734 | "\n expected : " << expected << |
| 735 | "\n calculated: " << calculated << |
| 736 | "\n diff : " << diff << |
| 737 | "\n tol : " << tol); |
| 738 | } |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | test_suite* DistributionTest::suite(SpeedLevel) { |
| 745 | auto* suite = BOOST_TEST_SUITE("Distribution tests" ); |
| 746 | |
| 747 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testNormal)); |
| 748 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testBivariate)); |
| 749 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testPoisson)); |
| 750 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testCumulativePoisson)); |
| 751 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testInverseCumulativePoisson)); |
| 752 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testBivariateCumulativeStudent)); |
| 753 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testInvCDFviaStochasticCollocation)); |
| 754 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testSankaranApproximation)); |
| 755 | suite->add(QUANTLIB_TEST_CASE(&DistributionTest::testBivariateCumulativeStudentVsBivariate)); |
| 756 | |
| 757 | return suite; |
| 758 | } |
| 759 | |
| 760 | |