| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2005 Klaus Spanderen |
| 5 | Copyright (C) 2005 StatPro Italia srl |
| 6 | |
| 7 | This file is part of QuantLib, a free-software/open-source library |
| 8 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 9 | |
| 10 | QuantLib is free software: you can redistribute it and/or modify it |
| 11 | under the terms of the QuantLib license. You should have received a |
| 12 | copy of the license along with this program; if not, please email |
| 13 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 14 | <http://quantlib.org/license.shtml>. |
| 15 | |
| 16 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 18 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 19 | */ |
| 20 | |
| 21 | #include <ql/processes/stochasticprocessarray.hpp> |
| 22 | #include <ql/math/matrixutilities/pseudosqrt.hpp> |
| 23 | |
| 24 | namespace QuantLib { |
| 25 | |
| 26 | StochasticProcessArray::StochasticProcessArray( |
| 27 | const std::vector<ext::shared_ptr<StochasticProcess1D> >& processes, |
| 28 | const Matrix& correlation) |
| 29 | : processes_(processes), |
| 30 | sqrtCorrelation_(pseudoSqrt(correlation,SalvagingAlgorithm::Spectral)) { |
| 31 | |
| 32 | QL_REQUIRE(!processes.empty(), "no processes given" ); |
| 33 | QL_REQUIRE(correlation.rows() == processes.size(), |
| 34 | "mismatch between number of processes " |
| 35 | "and size of correlation matrix" ); |
| 36 | for (auto& process : processes_) { |
| 37 | QL_REQUIRE(process, "null 1-D stochastic process" ); |
| 38 | registerWith(h: process); |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | Size StochasticProcessArray::size() const { |
| 43 | return processes_.size(); |
| 44 | } |
| 45 | |
| 46 | Array StochasticProcessArray::initialValues() const { |
| 47 | Array tmp(size()); |
| 48 | for (Size i=0; i<size(); ++i) |
| 49 | tmp[i] = processes_[i]->x0(); |
| 50 | return tmp; |
| 51 | } |
| 52 | |
| 53 | Array StochasticProcessArray::drift(Time t, |
| 54 | const Array& x) const { |
| 55 | Array tmp(size()); |
| 56 | for (Size i=0; i<size(); ++i) |
| 57 | tmp[i] = processes_[i]->drift(t, x: x[i]); |
| 58 | return tmp; |
| 59 | } |
| 60 | |
| 61 | Matrix StochasticProcessArray::diffusion(Time t, |
| 62 | const Array& x) const { |
| 63 | Matrix tmp = sqrtCorrelation_; |
| 64 | for (Size i=0; i<size(); ++i) { |
| 65 | Real sigma = processes_[i]->diffusion(t, x: x[i]); |
| 66 | std::transform(first: tmp.row_begin(i), last: tmp.row_end(i), |
| 67 | result: tmp.row_begin(i), |
| 68 | unary_op: [=](Real x) -> Real { return x * sigma; }); |
| 69 | } |
| 70 | return tmp; |
| 71 | } |
| 72 | |
| 73 | Array StochasticProcessArray::expectation(Time t0, |
| 74 | const Array& x0, |
| 75 | Time dt) const { |
| 76 | Array tmp(size()); |
| 77 | for (Size i=0; i<size(); ++i) |
| 78 | tmp[i] = processes_[i]->expectation(t0, x0: x0[i], dt); |
| 79 | return tmp; |
| 80 | } |
| 81 | |
| 82 | Matrix StochasticProcessArray::stdDeviation(Time t0, |
| 83 | const Array& x0, |
| 84 | Time dt) const { |
| 85 | Matrix tmp = sqrtCorrelation_; |
| 86 | for (Size i=0; i<size(); ++i) { |
| 87 | Real sigma = processes_[i]->stdDeviation(t0, x0: x0[i], dt); |
| 88 | std::transform(first: tmp.row_begin(i), last: tmp.row_end(i), |
| 89 | result: tmp.row_begin(i), |
| 90 | unary_op: [=](Real x) -> Real { return x * sigma; }); |
| 91 | } |
| 92 | return tmp; |
| 93 | } |
| 94 | |
| 95 | Matrix StochasticProcessArray::covariance(Time t0, |
| 96 | const Array& x0, |
| 97 | Time dt) const { |
| 98 | Matrix tmp = stdDeviation(t0, x0, dt); |
| 99 | return tmp*transpose(m: tmp); |
| 100 | } |
| 101 | |
| 102 | Array StochasticProcessArray::evolve( |
| 103 | Time t0, const Array& x0, Time dt, const Array& dw) const { |
| 104 | const Array dz = sqrtCorrelation_ * dw; |
| 105 | |
| 106 | Array tmp(size()); |
| 107 | for (Size i=0; i<size(); ++i) |
| 108 | tmp[i] = processes_[i]->evolve(t0, x0: x0[i], dt, dw: dz[i]); |
| 109 | return tmp; |
| 110 | } |
| 111 | |
| 112 | Array StochasticProcessArray::apply(const Array& x0, |
| 113 | const Array& dx) const { |
| 114 | Array tmp(size()); |
| 115 | for (Size i=0; i<size(); ++i) |
| 116 | tmp[i] = processes_[i]->apply(x0: x0[i],dx: dx[i]); |
| 117 | return tmp; |
| 118 | } |
| 119 | |
| 120 | Time StochasticProcessArray::time(const Date& d) const { |
| 121 | return processes_[0]->time(d); |
| 122 | } |
| 123 | |
| 124 | const ext::shared_ptr<StochasticProcess1D>& |
| 125 | StochasticProcessArray::process(Size i) const { |
| 126 | return processes_[i]; |
| 127 | } |
| 128 | |
| 129 | Matrix StochasticProcessArray::correlation() const { |
| 130 | return sqrtCorrelation_ * transpose(m: sqrtCorrelation_); |
| 131 | } |
| 132 | |
| 133 | } |
| 134 | |