| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2008 Klaus Spanderen |
| 5 | |
| 6 | This file is part of QuantLib, a free-software/open-source library |
| 7 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 8 | |
| 9 | QuantLib is free software: you can redistribute it and/or modify it |
| 10 | under the terms of the QuantLib license. You should have received a |
| 11 | copy of the license along with this program; if not, please email |
| 12 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 13 | <http://quantlib.org/license.shtml>. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 17 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 18 | */ |
| 19 | |
| 20 | #include <ql/processes/batesprocess.hpp> |
| 21 | #include <ql/math/distributions/normaldistribution.hpp> |
| 22 | #include <ql/math/distributions/poissondistribution.hpp> |
| 23 | |
| 24 | |
| 25 | namespace QuantLib { |
| 26 | BatesProcess::BatesProcess( |
| 27 | const Handle<YieldTermStructure>& riskFreeRate, |
| 28 | const Handle<YieldTermStructure>& dividendYield, |
| 29 | const Handle<Quote>& s0, |
| 30 | Real v0, Real kappa, |
| 31 | Real theta, Real sigma, Real rho, |
| 32 | Real lambda, Real nu, Real delta, |
| 33 | HestonProcess::Discretization d) |
| 34 | : HestonProcess(riskFreeRate, dividendYield, |
| 35 | s0, v0, kappa, theta, sigma, rho, d), |
| 36 | lambda_(lambda), delta_(delta), nu_(nu), |
| 37 | m_(std::exp(x: nu+0.5*delta*delta)-1) { |
| 38 | } |
| 39 | |
| 40 | Array BatesProcess::drift(Time t, const Array& x) const { |
| 41 | Array retVal = HestonProcess::drift(t, x); |
| 42 | retVal[0] -= lambda_*m_; |
| 43 | return retVal; |
| 44 | } |
| 45 | |
| 46 | Array BatesProcess::evolve(Time t0, const Array& x0, |
| 47 | Time dt, const Array& dw) const { |
| 48 | |
| 49 | const Size hestonFactors = HestonProcess::factors(); |
| 50 | |
| 51 | Real p = cumNormalDist_(dw[hestonFactors]); |
| 52 | if (p<0.0) |
| 53 | p = 0.0; |
| 54 | else if (p >= 1.0) |
| 55 | p = 1.0-QL_EPSILON; |
| 56 | |
| 57 | const Real n = InverseCumulativePoisson(lambda_*dt)(p); |
| 58 | Array retVal = HestonProcess::evolve(t0, x0, dt, dw); |
| 59 | retVal[0] *= |
| 60 | std::exp(x: -lambda_*m_*dt + nu_*n+delta_*std::sqrt(x: n)*dw[hestonFactors+1]); |
| 61 | |
| 62 | return retVal; |
| 63 | } |
| 64 | |
| 65 | Size BatesProcess::factors() const { |
| 66 | return HestonProcess::factors() + 2; |
| 67 | } |
| 68 | |
| 69 | Real BatesProcess::lambda() const { |
| 70 | return lambda_; |
| 71 | } |
| 72 | |
| 73 | Real BatesProcess::nu() const { |
| 74 | return nu_; |
| 75 | } |
| 76 | |
| 77 | Real BatesProcess::delta() const { |
| 78 | return delta_; |
| 79 | } |
| 80 | } |
| 81 | |