1/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3/*
4 Copyright (C) 2015 Ferdinando Ametrano
5 Copyright (C) 2015 Paolo Mazzocchi
6
7 This file is part of QuantLib, a free-software/open-source library
8 for financial quantitative analysts and developers - http://quantlib.org/
9
10 QuantLib is free software: you can redistribute it and/or modify it
11 under the terms of the QuantLib license. You should have received a
12 copy of the license along with this program; if not, please email
13 <quantlib-dev@lists.sf.net>. The license is also available online at
14 <http://quantlib.org/license.shtml>.
15
16 This program is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18 FOR A PARTICULAR PURPOSE. See the license for more details.
19*/
20
21#include <ql/math/polynomialmathfunction.hpp>
22#include <ql/math/pascaltriangle.hpp>
23
24namespace QuantLib {
25
26 PolynomialFunction::PolynomialFunction(const std::vector<Real>& coeff) {
27
28 QL_REQUIRE(!coeff.empty(), "empty coefficient vector");
29 order_ = coeff.size();
30 c_ = coeff;
31 derC_ = std::vector<Real>(order_-1);
32 prC_ = std::vector<Real>(order_);
33 K_ = 0.0;
34 eqs_ = Matrix(order_, order_, 0.0);
35
36 Size i;
37 for (i=0; i<order_-1; ++i) {
38 prC_[i] = c_[i]/(i+1);
39 derC_[i] = c_[i+1]*(i+1);
40 }
41 prC_[i] = c_[i]/(i + 1);
42 }
43
44 Real PolynomialFunction::operator()(Time t) const {
45 Real result=0.0, tPower=1.0;
46 for (Size i=0; i<order_; ++i) {
47 result += c_[i] * tPower;
48 tPower *= t;
49 }
50 return result;
51 }
52
53 Real PolynomialFunction::derivative(Time t) const {
54 Real result=0.0, tPower=1.0;
55 for (Size i=0; i<order_-1; ++i) {
56 result += derC_[i] * tPower;
57 tPower *= t;
58 }
59 return result;
60 }
61
62 Real PolynomialFunction::primitive(Time t) const {
63 Real result=K_, tPower=t;
64 for (Size i=0; i<order_; ++i) {
65 result += prC_[i] * tPower;
66 tPower *= t;
67 }
68 return result;
69 }
70
71 Real PolynomialFunction::definiteIntegral(Time t1,
72 Time t2) const {
73 return primitive(t: t2)-primitive(t: t1);
74 }
75
76 void PolynomialFunction::initializeEqs_(Time t,
77 Time t2) const {
78 Time dt = t2 - t;
79 Real tau;
80 for (Size i=0; i<order_; ++i) {
81 tau = 1.0;
82 for (Size j=i; j<order_; ++j) {
83 tau *= dt;
84 eqs_[i][j] = (tau * PascalTriangle::get(order: j + 1)[i]) / (j + 1);
85 }
86 }
87 }
88
89 std::vector<Real>
90 PolynomialFunction::definiteIntegralCoefficients(Time t,
91 Time t2) const {
92 Array k(c_.begin(), c_.end());
93 initializeEqs_(t, t2);
94 Array coeff = eqs_ * k;
95 std::vector<Real> result(coeff.begin(), coeff.end());
96 return result;
97 }
98
99 std::vector<Real>
100 PolynomialFunction::definiteDerivativeCoefficients(Time t,
101 Time t2) const {
102 Array k(c_.begin(), c_.end());
103 initializeEqs_(t, t2);
104 Array coeff = inverse(m: eqs_) * k;
105 std::vector<Real> result(coeff.begin(), coeff.end());
106 return result;
107 }
108
109}
110

source code of quantlib/ql/math/polynomialmathfunction.cpp

Morty Proxy This is a proxified and sanitized view of the page, visit original site.