| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2007 Ferdinando Ametrano |
| 5 | Copyright (C) 2007 François du Vignaud |
| 6 | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
| 7 | |
| 8 | This file is part of QuantLib, a free-software/open-source library |
| 9 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 10 | |
| 11 | QuantLib is free software: you can redistribute it and/or modify it |
| 12 | under the terms of the QuantLib license. You should have received a |
| 13 | copy of the license along with this program; if not, please email |
| 14 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 15 | <http://quantlib.org/license.shtml>. |
| 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 19 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 20 | */ |
| 21 | |
| 22 | /*! \file problem.hpp |
| 23 | \brief Abstract optimization problem class |
| 24 | */ |
| 25 | |
| 26 | #ifndef quantlib_optimization_problem_h |
| 27 | #define quantlib_optimization_problem_h |
| 28 | |
| 29 | #include <ql/math/optimization/constraint.hpp> |
| 30 | #include <ql/math/optimization/costfunction.hpp> |
| 31 | #include <ql/math/optimization/method.hpp> |
| 32 | #include <utility> |
| 33 | |
| 34 | namespace QuantLib { |
| 35 | |
| 36 | //! Constrained optimization problem |
| 37 | /*! \warning The passed CostFunction and Constraint instances are |
| 38 | stored by reference. The user of this class must |
| 39 | make sure that they are not destroyed before the |
| 40 | Problem instance. |
| 41 | */ |
| 42 | class Problem { |
| 43 | public: |
| 44 | //! default constructor |
| 45 | Problem(CostFunction& costFunction, Constraint& constraint, Array initialValue = Array()) |
| 46 | : costFunction_(costFunction), constraint_(constraint), |
| 47 | currentValue_(std::move(initialValue)) { |
| 48 | QL_REQUIRE(!constraint.empty(), "empty constraint given" ); |
| 49 | } |
| 50 | |
| 51 | /*! \warning it does not reset the current minumum to any initial value |
| 52 | */ |
| 53 | void reset(); |
| 54 | |
| 55 | //! call cost function computation and increment evaluation counter |
| 56 | Real value(const Array& x); |
| 57 | |
| 58 | //! call cost values computation and increment evaluation counter |
| 59 | Array values(const Array& x); |
| 60 | |
| 61 | //! call cost function gradient computation and increment |
| 62 | // evaluation counter |
| 63 | void gradient(Array& grad_f, |
| 64 | const Array& x); |
| 65 | |
| 66 | //! call cost function computation and it gradient |
| 67 | Real valueAndGradient(Array& grad_f, |
| 68 | const Array& x); |
| 69 | |
| 70 | //! Constraint |
| 71 | Constraint& constraint() const { return constraint_; } |
| 72 | |
| 73 | //! Cost function |
| 74 | CostFunction& costFunction() const { return costFunction_; } |
| 75 | |
| 76 | void setCurrentValue(const Array& currentValue) { |
| 77 | currentValue_=currentValue; |
| 78 | } |
| 79 | |
| 80 | //! current value of the local minimum |
| 81 | const Array& currentValue() const { return currentValue_; } |
| 82 | |
| 83 | void setFunctionValue(Real functionValue) { |
| 84 | functionValue_=functionValue; |
| 85 | } |
| 86 | |
| 87 | //! value of cost function |
| 88 | Real functionValue() const { return functionValue_; } |
| 89 | |
| 90 | void setGradientNormValue(Real squaredNorm) { |
| 91 | squaredNorm_=squaredNorm; |
| 92 | } |
| 93 | //! value of cost function gradient norm |
| 94 | Real gradientNormValue() const { return squaredNorm_; } |
| 95 | |
| 96 | //! number of evaluation of cost function |
| 97 | Integer functionEvaluation() const { return functionEvaluation_; } |
| 98 | |
| 99 | //! number of evaluation of cost function gradient |
| 100 | Integer gradientEvaluation() const { return gradientEvaluation_; } |
| 101 | |
| 102 | protected: |
| 103 | //! Unconstrained cost function |
| 104 | CostFunction& costFunction_; |
| 105 | //! Constraint |
| 106 | Constraint& constraint_; |
| 107 | //! current value of the local minimum |
| 108 | Array currentValue_; |
| 109 | //! function and gradient norm values at the currentValue_ (i.e. the last step) |
| 110 | Real functionValue_, squaredNorm_; |
| 111 | //! number of evaluation of cost function and its gradient |
| 112 | Integer functionEvaluation_, gradientEvaluation_; |
| 113 | }; |
| 114 | |
| 115 | // inline definitions |
| 116 | inline Real Problem::value(const Array& x) { |
| 117 | ++functionEvaluation_; |
| 118 | return costFunction_.value(x); |
| 119 | } |
| 120 | |
| 121 | inline Array Problem::values(const Array& x) { |
| 122 | ++functionEvaluation_; |
| 123 | return costFunction_.values(x); |
| 124 | } |
| 125 | |
| 126 | inline void Problem::gradient(Array& grad_f, |
| 127 | const Array& x) { |
| 128 | ++gradientEvaluation_; |
| 129 | costFunction_.gradient(grad&: grad_f, x); |
| 130 | } |
| 131 | |
| 132 | inline Real Problem::valueAndGradient(Array& grad_f, |
| 133 | const Array& x) { |
| 134 | ++functionEvaluation_; |
| 135 | ++gradientEvaluation_; |
| 136 | return costFunction_.valueAndGradient(grad&: grad_f, x); |
| 137 | } |
| 138 | |
| 139 | inline void Problem::reset() { |
| 140 | functionEvaluation_ = gradientEvaluation_ = 0; |
| 141 | functionValue_ = squaredNorm_ = Null<Real>(); |
| 142 | } |
| 143 | |
| 144 | } |
| 145 | |
| 146 | #endif |
| 147 | |