1/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3/*
4 Copyright (C) 2006, 2007, 2015 Ferdinando Ametrano
5 Copyright (C) 2006 Cristina Duminuco
6 Copyright (C) 2007 Giorgio Facchinetti
7 Copyright (C) 2015 Paolo Mazzocchi
8
9 This file is part of QuantLib, a free-software/open-source library
10 for financial quantitative analysts and developers - http://quantlib.org/
11
12 QuantLib is free software: you can redistribute it and/or modify it
13 under the terms of the QuantLib license. You should have received a
14 copy of the license along with this program; if not, please email
15 <quantlib-dev@lists.sf.net>. The license is also available online at
16 <http://quantlib.org/license.shtml>.
17
18 This program is distributed in the hope that it will be useful, but WITHOUT
19 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
20 FOR A PARTICULAR PURPOSE. See the license for more details.
21*/
22
23#ifndef quantlib_abcd_math_function_hpp
24#define quantlib_abcd_math_function_hpp
25
26#include <ql/types.hpp>
27#include <ql/errors.hpp>
28#include <vector>
29
30namespace QuantLib {
31
32 //! %Abcd functional form
33 /*! \f[ f(t) = [ a + b*t ] e^{-c*t} + d \f]
34 following Rebonato's notation. */
35 class AbcdMathFunction {
36
37 public:
38 /*! \deprecated Use `auto` or `decltype` instead.
39 Deprecated in version 1.29.
40 */
41 QL_DEPRECATED
42 typedef Time argument_type;
43
44 /*! \deprecated Use `auto` or `decltype` instead.
45 Deprecated in version 1.29.
46 */
47 QL_DEPRECATED
48 typedef Real result_type;
49
50 AbcdMathFunction(Real a = 0.002,
51 Real b = 0.001,
52 Real c = 0.16,
53 Real d = 0.0005);
54 AbcdMathFunction(std::vector<Real> abcd);
55
56 //! function value at time t: \f[ f(t) \f]
57 Real operator()(Time t) const;
58
59 //! time at which the function reaches maximum (if any)
60 Time maximumLocation() const;
61
62 //! maximum value of the function
63 Real maximumValue() const;
64
65 //! function value at time +inf: \f[ f(\inf) \f]
66 Real longTermValue() const { return d_; }
67
68 /*! first derivative of the function at time t
69 \f[ f'(t) = [ (b-c*a) + (-c*b)*t) ] e^{-c*t} \f] */
70 Real derivative(Time t) const;
71
72 /*! indefinite integral of the function at time t
73 \f[ \int f(t)dt = [ (-a/c-b/c^2) + (-b/c)*t ] e^{-c*t} + d*t \f] */
74 Real primitive(Time t) const;
75
76 /*! definite integral of the function between t1 and t2
77 \f[ \int_{t1}^{t2} f(t)dt \f] */
78 Real definiteIntegral(Time t1, Time t2) const;
79
80 /*! Inspectors */
81 Real a() const { return a_; }
82 Real b() const { return b_; }
83 Real c() const { return c_; }
84 Real d() const { return d_; }
85 const std::vector<Real>& coefficients() { return abcd_; }
86 const std::vector<Real>& derivativeCoefficients() { return dabcd_; }
87 // the primitive is not abcd
88
89 /*! coefficients of a AbcdMathFunction defined as definite
90 integral on a rolling window of length tau, with tau = t2-t */
91 std::vector<Real> definiteIntegralCoefficients(Time t,
92 Time t2) const;
93
94 /*! coefficients of a AbcdMathFunction defined as definite
95 derivative on a rolling window of length tau, with tau = t2-t */
96 std::vector<Real> definiteDerivativeCoefficients(Time t,
97 Time t2) const;
98
99 static void validate(Real a,
100 Real b,
101 Real c,
102 Real d);
103 protected:
104 Real a_, b_, c_, d_;
105 private:
106 void initialize_();
107 std::vector<Real> abcd_;
108 std::vector<Real> dabcd_;
109 Real da_, db_;
110 Real pa_, pb_, K_;
111
112 Real dibc_, diacplusbcc_;
113 };
114
115 // inline AbcdMathFunction
116 inline Real AbcdMathFunction::operator()(Time t) const {
117 //return (a_ + b_*t)*std::exp(-c_*t) + d_;
118 return t<0 ? 0.0 : Real((a_ + b_*t)*std::exp(x: -c_*t) + d_);
119 }
120
121 inline Real AbcdMathFunction::derivative(Time t) const {
122 //return (da_ + db_*t)*std::exp(-c_*t);
123 return t<0 ? 0.0 : Real((da_ + db_*t)*std::exp(x: -c_*t));
124 }
125
126 inline Real AbcdMathFunction::primitive(Time t) const {
127 //return (pa_ + pb_*t)*std::exp(-c_*t) + d_*t + K_;
128 return t<0 ? 0.0 : Real((pa_ + pb_*t)*std::exp(x: -c_*t) + d_*t + K_);
129 }
130
131 inline Real AbcdMathFunction::maximumValue() const {
132 if (b_==0.0 || a_<=0.0)
133 return d_;
134 return (*this)(maximumLocation());
135 }
136
137}
138
139#endif
140

source code of quantlib/ql/math/abcdmathfunction.hpp

Morty Proxy This is a proxified and sanitized view of the page, visit original site.