| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org> |
| 4 | */ |
| 5 | |
| 6 | #include <ctype.h> |
| 7 | #include <errno.h> |
| 8 | #include <stdio.h> |
| 9 | #include <stdlib.h> |
| 10 | #include <string.h> |
| 11 | |
| 12 | #include <hash.h> |
| 13 | #include <xalloc.h> |
| 14 | #include "internal.h" |
| 15 | #include "lkc.h" |
| 16 | |
| 17 | #define DEBUG_EXPR 0 |
| 18 | |
| 19 | HASHTABLE_DEFINE(expr_hashtable, EXPR_HASHSIZE); |
| 20 | |
| 21 | static struct expr *expr_eliminate_yn(struct expr *e); |
| 22 | |
| 23 | /** |
| 24 | * expr_lookup - return the expression with the given type and sub-nodes |
| 25 | * This looks up an expression with the specified type and sub-nodes. If such |
| 26 | * an expression is found in the hash table, it is returned. Otherwise, a new |
| 27 | * expression node is allocated and added to the hash table. |
| 28 | * @type: expression type |
| 29 | * @l: left node |
| 30 | * @r: right node |
| 31 | * return: expression |
| 32 | */ |
| 33 | static struct expr *expr_lookup(enum expr_type type, void *l, void *r) |
| 34 | { |
| 35 | struct expr *e; |
| 36 | int hash; |
| 37 | |
| 38 | hash = hash_32((unsigned int)type ^ hash_ptr(l) ^ hash_ptr(r)); |
| 39 | |
| 40 | hash_for_each_possible(expr_hashtable, e, node, hash) { |
| 41 | if (e->type == type && e->left._initdata == l && |
| 42 | e->right._initdata == r) |
| 43 | return e; |
| 44 | } |
| 45 | |
| 46 | e = xmalloc(sizeof(*e)); |
| 47 | e->type = type; |
| 48 | e->left._initdata = l; |
| 49 | e->right._initdata = r; |
| 50 | e->val_is_valid = false; |
| 51 | |
| 52 | hash_add(expr_hashtable, &e->node, hash); |
| 53 | |
| 54 | return e; |
| 55 | } |
| 56 | |
| 57 | struct expr *expr_alloc_symbol(struct symbol *sym) |
| 58 | { |
| 59 | return expr_lookup(type: E_SYMBOL, l: sym, NULL); |
| 60 | } |
| 61 | |
| 62 | struct expr *expr_alloc_one(enum expr_type type, struct expr *ce) |
| 63 | { |
| 64 | return expr_lookup(type, l: ce, NULL); |
| 65 | } |
| 66 | |
| 67 | struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2) |
| 68 | { |
| 69 | return expr_lookup(type, l: e1, r: e2); |
| 70 | } |
| 71 | |
| 72 | struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2) |
| 73 | { |
| 74 | return expr_lookup(type, l: s1, r: s2); |
| 75 | } |
| 76 | |
| 77 | struct expr *expr_alloc_and(struct expr *e1, struct expr *e2) |
| 78 | { |
| 79 | if (!e1) |
| 80 | return e2; |
| 81 | return e2 ? expr_alloc_two(type: E_AND, e1, e2) : e1; |
| 82 | } |
| 83 | |
| 84 | struct expr *expr_alloc_or(struct expr *e1, struct expr *e2) |
| 85 | { |
| 86 | if (!e1) |
| 87 | return e2; |
| 88 | return e2 ? expr_alloc_two(type: E_OR, e1, e2) : e1; |
| 89 | } |
| 90 | |
| 91 | static int trans_count; |
| 92 | |
| 93 | /* |
| 94 | * expr_eliminate_eq() helper. |
| 95 | * |
| 96 | * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does |
| 97 | * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared |
| 98 | * against all other leaves. Two equal leaves are both replaced with either 'y' |
| 99 | * or 'n' as appropriate for 'type', to be eliminated later. |
| 100 | */ |
| 101 | static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2) |
| 102 | { |
| 103 | struct expr *l, *r; |
| 104 | |
| 105 | /* Recurse down to leaves */ |
| 106 | |
| 107 | if ((*ep1)->type == type) { |
| 108 | l = (*ep1)->left.expr; |
| 109 | r = (*ep1)->right.expr; |
| 110 | __expr_eliminate_eq(type, ep1: &l, ep2); |
| 111 | __expr_eliminate_eq(type, ep1: &r, ep2); |
| 112 | *ep1 = expr_alloc_two(type, e1: l, e2: r); |
| 113 | return; |
| 114 | } |
| 115 | if ((*ep2)->type == type) { |
| 116 | l = (*ep2)->left.expr; |
| 117 | r = (*ep2)->right.expr; |
| 118 | __expr_eliminate_eq(type, ep1, ep2: &l); |
| 119 | __expr_eliminate_eq(type, ep1, ep2: &r); |
| 120 | *ep2 = expr_alloc_two(type, e1: l, e2: r); |
| 121 | return; |
| 122 | } |
| 123 | |
| 124 | /* *ep1 and *ep2 are leaves. Compare them. */ |
| 125 | |
| 126 | if ((*ep1)->type == E_SYMBOL && (*ep2)->type == E_SYMBOL && |
| 127 | (*ep1)->left.sym == (*ep2)->left.sym && |
| 128 | ((*ep1)->left.sym == &symbol_yes || (*ep1)->left.sym == &symbol_no)) |
| 129 | return; |
| 130 | if (!expr_eq(e1: *ep1, e2: *ep2)) |
| 131 | return; |
| 132 | |
| 133 | /* *ep1 and *ep2 are equal leaves. Prepare them for elimination. */ |
| 134 | |
| 135 | trans_count++; |
| 136 | switch (type) { |
| 137 | case E_OR: |
| 138 | *ep1 = expr_alloc_symbol(sym: &symbol_no); |
| 139 | *ep2 = expr_alloc_symbol(sym: &symbol_no); |
| 140 | break; |
| 141 | case E_AND: |
| 142 | *ep1 = expr_alloc_symbol(sym: &symbol_yes); |
| 143 | *ep2 = expr_alloc_symbol(sym: &symbol_yes); |
| 144 | break; |
| 145 | default: |
| 146 | ; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both. |
| 152 | * Example reductions: |
| 153 | * |
| 154 | * ep1: A && B -> ep1: y |
| 155 | * ep2: A && B && C -> ep2: C |
| 156 | * |
| 157 | * ep1: A || B -> ep1: n |
| 158 | * ep2: A || B || C -> ep2: C |
| 159 | * |
| 160 | * ep1: A && (B && FOO) -> ep1: FOO |
| 161 | * ep2: (BAR && B) && A -> ep2: BAR |
| 162 | * |
| 163 | * ep1: A && (B || C) -> ep1: y |
| 164 | * ep2: (C || B) && A -> ep2: y |
| 165 | * |
| 166 | * Comparisons are done between all operands at the same "level" of && or ||. |
| 167 | * For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the |
| 168 | * following operands will be compared: |
| 169 | * |
| 170 | * - 'e1', 'e2 || e3', and 'e4 || e5', against each other |
| 171 | * - e2 against e3 |
| 172 | * - e4 against e5 |
| 173 | * |
| 174 | * Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and |
| 175 | * '(e1 && e2) && e3' are both a single level. |
| 176 | * |
| 177 | * See __expr_eliminate_eq() as well. |
| 178 | */ |
| 179 | void expr_eliminate_eq(struct expr **ep1, struct expr **ep2) |
| 180 | { |
| 181 | if (!*ep1 || !*ep2) |
| 182 | return; |
| 183 | switch ((*ep1)->type) { |
| 184 | case E_OR: |
| 185 | case E_AND: |
| 186 | __expr_eliminate_eq(type: (*ep1)->type, ep1, ep2); |
| 187 | default: |
| 188 | ; |
| 189 | } |
| 190 | if ((*ep1)->type != (*ep2)->type) switch ((*ep2)->type) { |
| 191 | case E_OR: |
| 192 | case E_AND: |
| 193 | __expr_eliminate_eq(type: (*ep2)->type, ep1, ep2); |
| 194 | default: |
| 195 | ; |
| 196 | } |
| 197 | *ep1 = expr_eliminate_yn(e: *ep1); |
| 198 | *ep2 = expr_eliminate_yn(e: *ep2); |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Returns true if 'e1' and 'e2' are equal, after minor simplification. Two |
| 203 | * &&/|| expressions are considered equal if every operand in one expression |
| 204 | * equals some operand in the other (operands do not need to appear in the same |
| 205 | * order), recursively. |
| 206 | */ |
| 207 | bool expr_eq(struct expr *e1, struct expr *e2) |
| 208 | { |
| 209 | int old_count; |
| 210 | bool res; |
| 211 | |
| 212 | /* |
| 213 | * A NULL expr is taken to be yes, but there's also a different way to |
| 214 | * represent yes. expr_is_yes() checks for either representation. |
| 215 | */ |
| 216 | if (!e1 || !e2) |
| 217 | return expr_is_yes(e: e1) && expr_is_yes(e: e2); |
| 218 | |
| 219 | if (e1->type != e2->type) |
| 220 | return false; |
| 221 | switch (e1->type) { |
| 222 | case E_EQUAL: |
| 223 | case E_GEQ: |
| 224 | case E_GTH: |
| 225 | case E_LEQ: |
| 226 | case E_LTH: |
| 227 | case E_UNEQUAL: |
| 228 | return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym; |
| 229 | case E_SYMBOL: |
| 230 | return e1->left.sym == e2->left.sym; |
| 231 | case E_NOT: |
| 232 | return expr_eq(e1: e1->left.expr, e2: e2->left.expr); |
| 233 | case E_AND: |
| 234 | case E_OR: |
| 235 | old_count = trans_count; |
| 236 | expr_eliminate_eq(ep1: &e1, ep2: &e2); |
| 237 | res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL && |
| 238 | e1->left.sym == e2->left.sym); |
| 239 | trans_count = old_count; |
| 240 | return res; |
| 241 | case E_RANGE: |
| 242 | case E_NONE: |
| 243 | /* panic */; |
| 244 | } |
| 245 | |
| 246 | if (DEBUG_EXPR) { |
| 247 | expr_fprint(e: e1, stdout); |
| 248 | printf(format: " = " ); |
| 249 | expr_fprint(e: e2, stdout); |
| 250 | printf(format: " ?\n" ); |
| 251 | } |
| 252 | |
| 253 | return false; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * Recursively performs the following simplifications (as well as the |
| 258 | * corresponding simplifications with swapped operands): |
| 259 | * |
| 260 | * expr && n -> n |
| 261 | * expr && y -> expr |
| 262 | * expr || n -> expr |
| 263 | * expr || y -> y |
| 264 | * |
| 265 | * Returns the optimized expression. |
| 266 | */ |
| 267 | static struct expr *expr_eliminate_yn(struct expr *e) |
| 268 | { |
| 269 | struct expr *l, *r; |
| 270 | |
| 271 | if (e) switch (e->type) { |
| 272 | case E_AND: |
| 273 | l = expr_eliminate_yn(e: e->left.expr); |
| 274 | r = expr_eliminate_yn(e: e->right.expr); |
| 275 | if (l->type == E_SYMBOL) { |
| 276 | if (l->left.sym == &symbol_no) |
| 277 | return l; |
| 278 | else if (l->left.sym == &symbol_yes) |
| 279 | return r; |
| 280 | } |
| 281 | if (r->type == E_SYMBOL) { |
| 282 | if (r->left.sym == &symbol_no) |
| 283 | return r; |
| 284 | else if (r->left.sym == &symbol_yes) |
| 285 | return l; |
| 286 | } |
| 287 | break; |
| 288 | case E_OR: |
| 289 | l = expr_eliminate_yn(e: e->left.expr); |
| 290 | r = expr_eliminate_yn(e: e->right.expr); |
| 291 | if (l->type == E_SYMBOL) { |
| 292 | if (l->left.sym == &symbol_no) |
| 293 | return r; |
| 294 | else if (l->left.sym == &symbol_yes) |
| 295 | return l; |
| 296 | } |
| 297 | if (r->type == E_SYMBOL) { |
| 298 | if (r->left.sym == &symbol_no) |
| 299 | return l; |
| 300 | else if (r->left.sym == &symbol_yes) |
| 301 | return r; |
| 302 | } |
| 303 | break; |
| 304 | default: |
| 305 | ; |
| 306 | } |
| 307 | return e; |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * e1 || e2 -> ? |
| 312 | */ |
| 313 | static struct expr *expr_join_or(struct expr *e1, struct expr *e2) |
| 314 | { |
| 315 | struct expr *tmp; |
| 316 | struct symbol *sym1, *sym2; |
| 317 | |
| 318 | if (expr_eq(e1, e2)) |
| 319 | return e1; |
| 320 | if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) |
| 321 | return NULL; |
| 322 | if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) |
| 323 | return NULL; |
| 324 | if (e1->type == E_NOT) { |
| 325 | tmp = e1->left.expr; |
| 326 | if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) |
| 327 | return NULL; |
| 328 | sym1 = tmp->left.sym; |
| 329 | } else |
| 330 | sym1 = e1->left.sym; |
| 331 | if (e2->type == E_NOT) { |
| 332 | if (e2->left.expr->type != E_SYMBOL) |
| 333 | return NULL; |
| 334 | sym2 = e2->left.expr->left.sym; |
| 335 | } else |
| 336 | sym2 = e2->left.sym; |
| 337 | if (sym1 != sym2) |
| 338 | return NULL; |
| 339 | if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) |
| 340 | return NULL; |
| 341 | if (sym1->type == S_TRISTATE) { |
| 342 | if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| 343 | ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || |
| 344 | (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) { |
| 345 | // (a='y') || (a='m') -> (a!='n') |
| 346 | return expr_alloc_comp(type: E_UNEQUAL, s1: sym1, s2: &symbol_no); |
| 347 | } |
| 348 | if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| 349 | ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || |
| 350 | (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) { |
| 351 | // (a='y') || (a='n') -> (a!='m') |
| 352 | return expr_alloc_comp(type: E_UNEQUAL, s1: sym1, s2: &symbol_mod); |
| 353 | } |
| 354 | if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| 355 | ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || |
| 356 | (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) { |
| 357 | // (a='m') || (a='n') -> (a!='y') |
| 358 | return expr_alloc_comp(type: E_UNEQUAL, s1: sym1, s2: &symbol_yes); |
| 359 | } |
| 360 | } |
| 361 | if (sym1->type == S_BOOLEAN) { |
| 362 | // a || !a -> y |
| 363 | if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) || |
| 364 | (e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL)) |
| 365 | return expr_alloc_symbol(sym: &symbol_yes); |
| 366 | } |
| 367 | |
| 368 | if (DEBUG_EXPR) { |
| 369 | printf(format: "optimize (" ); |
| 370 | expr_fprint(e: e1, stdout); |
| 371 | printf(format: ") || (" ); |
| 372 | expr_fprint(e: e2, stdout); |
| 373 | printf(format: ")?\n" ); |
| 374 | } |
| 375 | return NULL; |
| 376 | } |
| 377 | |
| 378 | static struct expr *expr_join_and(struct expr *e1, struct expr *e2) |
| 379 | { |
| 380 | struct expr *tmp; |
| 381 | struct symbol *sym1, *sym2; |
| 382 | |
| 383 | if (expr_eq(e1, e2)) |
| 384 | return e1; |
| 385 | if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) |
| 386 | return NULL; |
| 387 | if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) |
| 388 | return NULL; |
| 389 | if (e1->type == E_NOT) { |
| 390 | tmp = e1->left.expr; |
| 391 | if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) |
| 392 | return NULL; |
| 393 | sym1 = tmp->left.sym; |
| 394 | } else |
| 395 | sym1 = e1->left.sym; |
| 396 | if (e2->type == E_NOT) { |
| 397 | if (e2->left.expr->type != E_SYMBOL) |
| 398 | return NULL; |
| 399 | sym2 = e2->left.expr->left.sym; |
| 400 | } else |
| 401 | sym2 = e2->left.sym; |
| 402 | if (sym1 != sym2) |
| 403 | return NULL; |
| 404 | if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) |
| 405 | return NULL; |
| 406 | |
| 407 | if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) || |
| 408 | (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes)) |
| 409 | // (a) && (a='y') -> (a='y') |
| 410 | return expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: &symbol_yes); |
| 411 | |
| 412 | if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) || |
| 413 | (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no)) |
| 414 | // (a) && (a!='n') -> (a) |
| 415 | return expr_alloc_symbol(sym: sym1); |
| 416 | |
| 417 | if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) || |
| 418 | (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod)) |
| 419 | // (a) && (a!='m') -> (a='y') |
| 420 | return expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: &symbol_yes); |
| 421 | |
| 422 | if (sym1->type == S_TRISTATE) { |
| 423 | if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) { |
| 424 | // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' |
| 425 | sym2 = e1->right.sym; |
| 426 | if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) |
| 427 | return sym2 != e2->right.sym ? expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: sym2) |
| 428 | : expr_alloc_symbol(sym: &symbol_no); |
| 429 | } |
| 430 | if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) { |
| 431 | // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' |
| 432 | sym2 = e2->right.sym; |
| 433 | if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) |
| 434 | return sym2 != e1->right.sym ? expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: sym2) |
| 435 | : expr_alloc_symbol(sym: &symbol_no); |
| 436 | } |
| 437 | if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| 438 | ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || |
| 439 | (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) |
| 440 | // (a!='y') && (a!='n') -> (a='m') |
| 441 | return expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: &symbol_mod); |
| 442 | |
| 443 | if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| 444 | ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || |
| 445 | (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) |
| 446 | // (a!='y') && (a!='m') -> (a='n') |
| 447 | return expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: &symbol_no); |
| 448 | |
| 449 | if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| 450 | ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || |
| 451 | (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) |
| 452 | // (a!='m') && (a!='n') -> (a='m') |
| 453 | return expr_alloc_comp(type: E_EQUAL, s1: sym1, s2: &symbol_yes); |
| 454 | |
| 455 | if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) || |
| 456 | (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) || |
| 457 | (e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) || |
| 458 | (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes)) |
| 459 | return NULL; |
| 460 | } |
| 461 | |
| 462 | if (DEBUG_EXPR) { |
| 463 | printf(format: "optimize (" ); |
| 464 | expr_fprint(e: e1, stdout); |
| 465 | printf(format: ") && (" ); |
| 466 | expr_fprint(e: e2, stdout); |
| 467 | printf(format: ")?\n" ); |
| 468 | } |
| 469 | return NULL; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * expr_eliminate_dups() helper. |
| 474 | * |
| 475 | * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does |
| 476 | * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared |
| 477 | * against all other leaves to look for simplifications. |
| 478 | */ |
| 479 | static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2) |
| 480 | { |
| 481 | struct expr *tmp, *l, *r; |
| 482 | |
| 483 | /* Recurse down to leaves */ |
| 484 | |
| 485 | if ((*ep1)->type == type) { |
| 486 | l = (*ep1)->left.expr; |
| 487 | r = (*ep1)->right.expr; |
| 488 | expr_eliminate_dups1(type, ep1: &l, ep2); |
| 489 | expr_eliminate_dups1(type, ep1: &r, ep2); |
| 490 | *ep1 = expr_alloc_two(type, e1: l, e2: r); |
| 491 | return; |
| 492 | } |
| 493 | if ((*ep2)->type == type) { |
| 494 | l = (*ep2)->left.expr; |
| 495 | r = (*ep2)->right.expr; |
| 496 | expr_eliminate_dups1(type, ep1, ep2: &l); |
| 497 | expr_eliminate_dups1(type, ep1, ep2: &r); |
| 498 | *ep2 = expr_alloc_two(type, e1: l, e2: r); |
| 499 | return; |
| 500 | } |
| 501 | |
| 502 | /* *ep1 and *ep2 are leaves. Compare and process them. */ |
| 503 | |
| 504 | switch (type) { |
| 505 | case E_OR: |
| 506 | tmp = expr_join_or(e1: *ep1, e2: *ep2); |
| 507 | if (tmp) { |
| 508 | *ep1 = expr_alloc_symbol(sym: &symbol_no); |
| 509 | *ep2 = tmp; |
| 510 | trans_count++; |
| 511 | } |
| 512 | break; |
| 513 | case E_AND: |
| 514 | tmp = expr_join_and(e1: *ep1, e2: *ep2); |
| 515 | if (tmp) { |
| 516 | *ep1 = expr_alloc_symbol(sym: &symbol_yes); |
| 517 | *ep2 = tmp; |
| 518 | trans_count++; |
| 519 | } |
| 520 | break; |
| 521 | default: |
| 522 | ; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Rewrites 'e' in-place to remove ("join") duplicate and other redundant |
| 528 | * operands. |
| 529 | * |
| 530 | * Example simplifications: |
| 531 | * |
| 532 | * A || B || A -> A || B |
| 533 | * A && B && A=y -> A=y && B |
| 534 | * |
| 535 | * Returns the deduplicated expression. |
| 536 | */ |
| 537 | struct expr *expr_eliminate_dups(struct expr *e) |
| 538 | { |
| 539 | int oldcount; |
| 540 | if (!e) |
| 541 | return e; |
| 542 | |
| 543 | oldcount = trans_count; |
| 544 | do { |
| 545 | struct expr *l, *r; |
| 546 | |
| 547 | trans_count = 0; |
| 548 | switch (e->type) { |
| 549 | case E_OR: case E_AND: |
| 550 | l = expr_eliminate_dups(e: e->left.expr); |
| 551 | r = expr_eliminate_dups(e: e->right.expr); |
| 552 | expr_eliminate_dups1(type: e->type, ep1: &l, ep2: &r); |
| 553 | e = expr_alloc_two(type: e->type, e1: l, e2: r); |
| 554 | default: |
| 555 | ; |
| 556 | } |
| 557 | e = expr_eliminate_yn(e); |
| 558 | } while (trans_count); /* repeat until we get no more simplifications */ |
| 559 | trans_count = oldcount; |
| 560 | return e; |
| 561 | } |
| 562 | |
| 563 | /* |
| 564 | * Performs various simplifications involving logical operators and |
| 565 | * comparisons. |
| 566 | * |
| 567 | * For bool type: |
| 568 | * A=n -> !A |
| 569 | * A=m -> n |
| 570 | * A=y -> A |
| 571 | * A!=n -> A |
| 572 | * A!=m -> y |
| 573 | * A!=y -> !A |
| 574 | * |
| 575 | * For any type: |
| 576 | * !!A -> A |
| 577 | * !(A=B) -> A!=B |
| 578 | * !(A!=B) -> A=B |
| 579 | * !(A<=B) -> A>B |
| 580 | * !(A>=B) -> A<B |
| 581 | * !(A<B) -> A>=B |
| 582 | * !(A>B) -> A<=B |
| 583 | * !(A || B) -> !A && !B |
| 584 | * !(A && B) -> !A || !B |
| 585 | * |
| 586 | * For constant: |
| 587 | * !y -> n |
| 588 | * !m -> m |
| 589 | * !n -> y |
| 590 | * |
| 591 | * Allocates and returns a new expression. |
| 592 | */ |
| 593 | struct expr *expr_transform(struct expr *e) |
| 594 | { |
| 595 | if (!e) |
| 596 | return NULL; |
| 597 | switch (e->type) { |
| 598 | case E_EQUAL: |
| 599 | case E_GEQ: |
| 600 | case E_GTH: |
| 601 | case E_LEQ: |
| 602 | case E_LTH: |
| 603 | case E_UNEQUAL: |
| 604 | case E_SYMBOL: |
| 605 | break; |
| 606 | default: |
| 607 | e = expr_alloc_two(type: e->type, |
| 608 | e1: expr_transform(e: e->left.expr), |
| 609 | e2: expr_transform(e: e->right.expr)); |
| 610 | } |
| 611 | |
| 612 | switch (e->type) { |
| 613 | case E_EQUAL: |
| 614 | if (e->left.sym->type != S_BOOLEAN) |
| 615 | break; |
| 616 | if (e->right.sym == &symbol_no) { |
| 617 | // A=n -> !A |
| 618 | e = expr_alloc_one(type: E_NOT, ce: expr_alloc_symbol(sym: e->left.sym)); |
| 619 | break; |
| 620 | } |
| 621 | if (e->right.sym == &symbol_mod) { |
| 622 | // A=m -> n |
| 623 | printf(format: "boolean symbol %s tested for 'm'? test forced to 'n'\n" , e->left.sym->name); |
| 624 | e = expr_alloc_symbol(sym: &symbol_no); |
| 625 | break; |
| 626 | } |
| 627 | if (e->right.sym == &symbol_yes) { |
| 628 | // A=y -> A |
| 629 | e = expr_alloc_symbol(sym: e->left.sym); |
| 630 | break; |
| 631 | } |
| 632 | break; |
| 633 | case E_UNEQUAL: |
| 634 | if (e->left.sym->type != S_BOOLEAN) |
| 635 | break; |
| 636 | if (e->right.sym == &symbol_no) { |
| 637 | // A!=n -> A |
| 638 | e = expr_alloc_symbol(sym: e->left.sym); |
| 639 | break; |
| 640 | } |
| 641 | if (e->right.sym == &symbol_mod) { |
| 642 | // A!=m -> y |
| 643 | printf(format: "boolean symbol %s tested for 'm'? test forced to 'y'\n" , e->left.sym->name); |
| 644 | e = expr_alloc_symbol(sym: &symbol_yes); |
| 645 | break; |
| 646 | } |
| 647 | if (e->right.sym == &symbol_yes) { |
| 648 | // A!=y -> !A |
| 649 | e = expr_alloc_one(type: E_NOT, ce: e->left.expr); |
| 650 | break; |
| 651 | } |
| 652 | break; |
| 653 | case E_NOT: |
| 654 | switch (e->left.expr->type) { |
| 655 | case E_NOT: |
| 656 | // !!A -> A |
| 657 | e = e->left.expr->left.expr; |
| 658 | break; |
| 659 | case E_EQUAL: |
| 660 | case E_UNEQUAL: |
| 661 | // !(A=B) -> A!=B |
| 662 | e = expr_alloc_comp(type: e->left.expr->type == E_EQUAL ? E_UNEQUAL : E_EQUAL, |
| 663 | s1: e->left.expr->left.sym, |
| 664 | s2: e->left.expr->right.sym); |
| 665 | break; |
| 666 | case E_LEQ: |
| 667 | case E_GEQ: |
| 668 | // !(A<=B) -> A>B |
| 669 | e = expr_alloc_comp(type: e->left.expr->type == E_LEQ ? E_GTH : E_LTH, |
| 670 | s1: e->left.expr->left.sym, |
| 671 | s2: e->left.expr->right.sym); |
| 672 | break; |
| 673 | case E_LTH: |
| 674 | case E_GTH: |
| 675 | // !(A<B) -> A>=B |
| 676 | e = expr_alloc_comp(type: e->left.expr->type == E_LTH ? E_GEQ : E_LEQ, |
| 677 | s1: e->left.expr->left.sym, |
| 678 | s2: e->left.expr->right.sym); |
| 679 | break; |
| 680 | case E_OR: |
| 681 | // !(A || B) -> !A && !B |
| 682 | e = expr_alloc_and(e1: expr_alloc_one(type: E_NOT, ce: e->left.expr->left.expr), |
| 683 | e2: expr_alloc_one(type: E_NOT, ce: e->left.expr->right.expr)); |
| 684 | e = expr_transform(e); |
| 685 | break; |
| 686 | case E_AND: |
| 687 | // !(A && B) -> !A || !B |
| 688 | e = expr_alloc_or(e1: expr_alloc_one(type: E_NOT, ce: e->left.expr->left.expr), |
| 689 | e2: expr_alloc_one(type: E_NOT, ce: e->left.expr->right.expr)); |
| 690 | e = expr_transform(e); |
| 691 | break; |
| 692 | case E_SYMBOL: |
| 693 | if (e->left.expr->left.sym == &symbol_yes) |
| 694 | // !'y' -> 'n' |
| 695 | e = expr_alloc_symbol(sym: &symbol_no); |
| 696 | else if (e->left.expr->left.sym == &symbol_mod) |
| 697 | // !'m' -> 'm' |
| 698 | e = expr_alloc_symbol(sym: &symbol_mod); |
| 699 | else if (e->left.expr->left.sym == &symbol_no) |
| 700 | // !'n' -> 'y' |
| 701 | e = expr_alloc_symbol(sym: &symbol_yes); |
| 702 | break; |
| 703 | default: |
| 704 | ; |
| 705 | } |
| 706 | break; |
| 707 | default: |
| 708 | ; |
| 709 | } |
| 710 | return e; |
| 711 | } |
| 712 | |
| 713 | bool expr_contains_symbol(struct expr *dep, struct symbol *sym) |
| 714 | { |
| 715 | if (!dep) |
| 716 | return false; |
| 717 | |
| 718 | switch (dep->type) { |
| 719 | case E_AND: |
| 720 | case E_OR: |
| 721 | return expr_contains_symbol(dep: dep->left.expr, sym) || |
| 722 | expr_contains_symbol(dep: dep->right.expr, sym); |
| 723 | case E_SYMBOL: |
| 724 | return dep->left.sym == sym; |
| 725 | case E_EQUAL: |
| 726 | case E_GEQ: |
| 727 | case E_GTH: |
| 728 | case E_LEQ: |
| 729 | case E_LTH: |
| 730 | case E_UNEQUAL: |
| 731 | return dep->left.sym == sym || |
| 732 | dep->right.sym == sym; |
| 733 | case E_NOT: |
| 734 | return expr_contains_symbol(dep: dep->left.expr, sym); |
| 735 | default: |
| 736 | ; |
| 737 | } |
| 738 | return false; |
| 739 | } |
| 740 | |
| 741 | bool expr_depends_symbol(struct expr *dep, struct symbol *sym) |
| 742 | { |
| 743 | if (!dep) |
| 744 | return false; |
| 745 | |
| 746 | switch (dep->type) { |
| 747 | case E_AND: |
| 748 | return expr_depends_symbol(dep: dep->left.expr, sym) || |
| 749 | expr_depends_symbol(dep: dep->right.expr, sym); |
| 750 | case E_SYMBOL: |
| 751 | return dep->left.sym == sym; |
| 752 | case E_EQUAL: |
| 753 | if (dep->left.sym == sym) { |
| 754 | if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod) |
| 755 | return true; |
| 756 | } |
| 757 | break; |
| 758 | case E_UNEQUAL: |
| 759 | if (dep->left.sym == sym) { |
| 760 | if (dep->right.sym == &symbol_no) |
| 761 | return true; |
| 762 | } |
| 763 | break; |
| 764 | default: |
| 765 | ; |
| 766 | } |
| 767 | return false; |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * Inserts explicit comparisons of type 'type' to symbol 'sym' into the |
| 772 | * expression 'e'. |
| 773 | * |
| 774 | * Examples transformations for type == E_UNEQUAL, sym == &symbol_no: |
| 775 | * |
| 776 | * A -> A!=n |
| 777 | * !A -> A=n |
| 778 | * A && B -> !(A=n || B=n) |
| 779 | * A || B -> !(A=n && B=n) |
| 780 | * A && (B || C) -> !(A=n || (B=n && C=n)) |
| 781 | * |
| 782 | * Allocates and returns a new expression. |
| 783 | */ |
| 784 | struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym) |
| 785 | { |
| 786 | struct expr *e1, *e2; |
| 787 | |
| 788 | if (!e) { |
| 789 | e = expr_alloc_symbol(sym); |
| 790 | if (type == E_UNEQUAL) |
| 791 | e = expr_alloc_one(type: E_NOT, ce: e); |
| 792 | return e; |
| 793 | } |
| 794 | switch (e->type) { |
| 795 | case E_AND: |
| 796 | e1 = expr_trans_compare(e: e->left.expr, type: E_EQUAL, sym); |
| 797 | e2 = expr_trans_compare(e: e->right.expr, type: E_EQUAL, sym); |
| 798 | if (sym == &symbol_yes) |
| 799 | e = expr_alloc_two(type: E_AND, e1, e2); |
| 800 | if (sym == &symbol_no) |
| 801 | e = expr_alloc_two(type: E_OR, e1, e2); |
| 802 | if (type == E_UNEQUAL) |
| 803 | e = expr_alloc_one(type: E_NOT, ce: e); |
| 804 | return e; |
| 805 | case E_OR: |
| 806 | e1 = expr_trans_compare(e: e->left.expr, type: E_EQUAL, sym); |
| 807 | e2 = expr_trans_compare(e: e->right.expr, type: E_EQUAL, sym); |
| 808 | if (sym == &symbol_yes) |
| 809 | e = expr_alloc_two(type: E_OR, e1, e2); |
| 810 | if (sym == &symbol_no) |
| 811 | e = expr_alloc_two(type: E_AND, e1, e2); |
| 812 | if (type == E_UNEQUAL) |
| 813 | e = expr_alloc_one(type: E_NOT, ce: e); |
| 814 | return e; |
| 815 | case E_NOT: |
| 816 | return expr_trans_compare(e: e->left.expr, type: type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym); |
| 817 | case E_UNEQUAL: |
| 818 | case E_LTH: |
| 819 | case E_LEQ: |
| 820 | case E_GTH: |
| 821 | case E_GEQ: |
| 822 | case E_EQUAL: |
| 823 | if (type == E_EQUAL) { |
| 824 | if (sym == &symbol_yes) |
| 825 | return e; |
| 826 | if (sym == &symbol_mod) |
| 827 | return expr_alloc_symbol(sym: &symbol_no); |
| 828 | if (sym == &symbol_no) |
| 829 | return expr_alloc_one(type: E_NOT, ce: e); |
| 830 | } else { |
| 831 | if (sym == &symbol_yes) |
| 832 | return expr_alloc_one(type: E_NOT, ce: e); |
| 833 | if (sym == &symbol_mod) |
| 834 | return expr_alloc_symbol(sym: &symbol_yes); |
| 835 | if (sym == &symbol_no) |
| 836 | return e; |
| 837 | } |
| 838 | break; |
| 839 | case E_SYMBOL: |
| 840 | return expr_alloc_comp(type, s1: e->left.sym, s2: sym); |
| 841 | case E_RANGE: |
| 842 | case E_NONE: |
| 843 | /* panic */; |
| 844 | } |
| 845 | return NULL; |
| 846 | } |
| 847 | |
| 848 | enum string_value_kind { |
| 849 | k_string, |
| 850 | k_signed, |
| 851 | k_unsigned, |
| 852 | }; |
| 853 | |
| 854 | union string_value { |
| 855 | unsigned long long u; |
| 856 | signed long long s; |
| 857 | }; |
| 858 | |
| 859 | static enum string_value_kind expr_parse_string(const char *str, |
| 860 | enum symbol_type type, |
| 861 | union string_value *val) |
| 862 | { |
| 863 | char *tail; |
| 864 | enum string_value_kind kind; |
| 865 | |
| 866 | errno = 0; |
| 867 | switch (type) { |
| 868 | case S_BOOLEAN: |
| 869 | case S_TRISTATE: |
| 870 | val->s = !strcmp(s1: str, s2: "n" ) ? 0 : |
| 871 | !strcmp(s1: str, s2: "m" ) ? 1 : |
| 872 | !strcmp(s1: str, s2: "y" ) ? 2 : -1; |
| 873 | return k_signed; |
| 874 | case S_INT: |
| 875 | val->s = strtoll(nptr: str, endptr: &tail, base: 10); |
| 876 | kind = k_signed; |
| 877 | break; |
| 878 | case S_HEX: |
| 879 | val->u = strtoull(nptr: str, endptr: &tail, base: 16); |
| 880 | kind = k_unsigned; |
| 881 | break; |
| 882 | default: |
| 883 | val->s = strtoll(nptr: str, endptr: &tail, base: 0); |
| 884 | kind = k_signed; |
| 885 | break; |
| 886 | } |
| 887 | return !errno && !*tail && tail > str && isxdigit(tail[-1]) |
| 888 | ? kind : k_string; |
| 889 | } |
| 890 | |
| 891 | static tristate __expr_calc_value(struct expr *e) |
| 892 | { |
| 893 | tristate val1, val2; |
| 894 | const char *str1, *str2; |
| 895 | enum string_value_kind k1 = k_string, k2 = k_string; |
| 896 | union string_value lval = {}, rval = {}; |
| 897 | int res; |
| 898 | |
| 899 | switch (e->type) { |
| 900 | case E_SYMBOL: |
| 901 | sym_calc_value(sym: e->left.sym); |
| 902 | return e->left.sym->curr.tri; |
| 903 | case E_AND: |
| 904 | val1 = expr_calc_value(e: e->left.expr); |
| 905 | val2 = expr_calc_value(e: e->right.expr); |
| 906 | return EXPR_AND(val1, val2); |
| 907 | case E_OR: |
| 908 | val1 = expr_calc_value(e: e->left.expr); |
| 909 | val2 = expr_calc_value(e: e->right.expr); |
| 910 | return EXPR_OR(val1, val2); |
| 911 | case E_NOT: |
| 912 | val1 = expr_calc_value(e: e->left.expr); |
| 913 | return EXPR_NOT(val1); |
| 914 | case E_EQUAL: |
| 915 | case E_GEQ: |
| 916 | case E_GTH: |
| 917 | case E_LEQ: |
| 918 | case E_LTH: |
| 919 | case E_UNEQUAL: |
| 920 | break; |
| 921 | default: |
| 922 | printf(format: "expr_calc_value: %d?\n" , e->type); |
| 923 | return no; |
| 924 | } |
| 925 | |
| 926 | sym_calc_value(sym: e->left.sym); |
| 927 | sym_calc_value(sym: e->right.sym); |
| 928 | str1 = sym_get_string_value(sym: e->left.sym); |
| 929 | str2 = sym_get_string_value(sym: e->right.sym); |
| 930 | |
| 931 | if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) { |
| 932 | k1 = expr_parse_string(str: str1, type: e->left.sym->type, val: &lval); |
| 933 | k2 = expr_parse_string(str: str2, type: e->right.sym->type, val: &rval); |
| 934 | } |
| 935 | |
| 936 | if (k1 == k_string || k2 == k_string) |
| 937 | res = strcmp(s1: str1, s2: str2); |
| 938 | else if (k1 == k_unsigned || k2 == k_unsigned) |
| 939 | res = (lval.u > rval.u) - (lval.u < rval.u); |
| 940 | else /* if (k1 == k_signed && k2 == k_signed) */ |
| 941 | res = (lval.s > rval.s) - (lval.s < rval.s); |
| 942 | |
| 943 | switch(e->type) { |
| 944 | case E_EQUAL: |
| 945 | return res ? no : yes; |
| 946 | case E_GEQ: |
| 947 | return res >= 0 ? yes : no; |
| 948 | case E_GTH: |
| 949 | return res > 0 ? yes : no; |
| 950 | case E_LEQ: |
| 951 | return res <= 0 ? yes : no; |
| 952 | case E_LTH: |
| 953 | return res < 0 ? yes : no; |
| 954 | case E_UNEQUAL: |
| 955 | return res ? yes : no; |
| 956 | default: |
| 957 | printf(format: "expr_calc_value: relation %d?\n" , e->type); |
| 958 | return no; |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | /** |
| 963 | * expr_calc_value - return the tristate value of the given expression |
| 964 | * @e: expression |
| 965 | * return: tristate value of the expression |
| 966 | */ |
| 967 | tristate expr_calc_value(struct expr *e) |
| 968 | { |
| 969 | if (!e) |
| 970 | return yes; |
| 971 | |
| 972 | if (!e->val_is_valid) { |
| 973 | e->val = __expr_calc_value(e); |
| 974 | e->val_is_valid = true; |
| 975 | } |
| 976 | |
| 977 | return e->val; |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * expr_invalidate_all - invalidate all cached expression values |
| 982 | */ |
| 983 | void expr_invalidate_all(void) |
| 984 | { |
| 985 | struct expr *e; |
| 986 | |
| 987 | hash_for_each(expr_hashtable, e, node) |
| 988 | e->val_is_valid = false; |
| 989 | } |
| 990 | |
| 991 | static int expr_compare_type(enum expr_type t1, enum expr_type t2) |
| 992 | { |
| 993 | if (t1 == t2) |
| 994 | return 0; |
| 995 | switch (t1) { |
| 996 | case E_LEQ: |
| 997 | case E_LTH: |
| 998 | case E_GEQ: |
| 999 | case E_GTH: |
| 1000 | if (t2 == E_EQUAL || t2 == E_UNEQUAL) |
| 1001 | return 1; |
| 1002 | /* fallthrough */ |
| 1003 | case E_EQUAL: |
| 1004 | case E_UNEQUAL: |
| 1005 | if (t2 == E_NOT) |
| 1006 | return 1; |
| 1007 | /* fallthrough */ |
| 1008 | case E_NOT: |
| 1009 | if (t2 == E_AND) |
| 1010 | return 1; |
| 1011 | /* fallthrough */ |
| 1012 | case E_AND: |
| 1013 | if (t2 == E_OR) |
| 1014 | return 1; |
| 1015 | /* fallthrough */ |
| 1016 | default: |
| 1017 | break; |
| 1018 | } |
| 1019 | return 0; |
| 1020 | } |
| 1021 | |
| 1022 | void expr_print(const struct expr *e, |
| 1023 | void (*fn)(void *, struct symbol *, const char *), |
| 1024 | void *data, int prevtoken) |
| 1025 | { |
| 1026 | if (!e) { |
| 1027 | fn(data, NULL, "y" ); |
| 1028 | return; |
| 1029 | } |
| 1030 | |
| 1031 | if (expr_compare_type(t1: prevtoken, t2: e->type) > 0) |
| 1032 | fn(data, NULL, "(" ); |
| 1033 | switch (e->type) { |
| 1034 | case E_SYMBOL: |
| 1035 | if (e->left.sym->name) |
| 1036 | fn(data, e->left.sym, e->left.sym->name); |
| 1037 | else |
| 1038 | fn(data, NULL, "<choice>" ); |
| 1039 | break; |
| 1040 | case E_NOT: |
| 1041 | fn(data, NULL, "!" ); |
| 1042 | expr_print(e: e->left.expr, fn, data, prevtoken: E_NOT); |
| 1043 | break; |
| 1044 | case E_EQUAL: |
| 1045 | if (e->left.sym->name) |
| 1046 | fn(data, e->left.sym, e->left.sym->name); |
| 1047 | else |
| 1048 | fn(data, NULL, "<choice>" ); |
| 1049 | fn(data, NULL, "=" ); |
| 1050 | fn(data, e->right.sym, e->right.sym->name); |
| 1051 | break; |
| 1052 | case E_LEQ: |
| 1053 | case E_LTH: |
| 1054 | if (e->left.sym->name) |
| 1055 | fn(data, e->left.sym, e->left.sym->name); |
| 1056 | else |
| 1057 | fn(data, NULL, "<choice>" ); |
| 1058 | fn(data, NULL, e->type == E_LEQ ? "<=" : "<" ); |
| 1059 | fn(data, e->right.sym, e->right.sym->name); |
| 1060 | break; |
| 1061 | case E_GEQ: |
| 1062 | case E_GTH: |
| 1063 | if (e->left.sym->name) |
| 1064 | fn(data, e->left.sym, e->left.sym->name); |
| 1065 | else |
| 1066 | fn(data, NULL, "<choice>" ); |
| 1067 | fn(data, NULL, e->type == E_GEQ ? ">=" : ">" ); |
| 1068 | fn(data, e->right.sym, e->right.sym->name); |
| 1069 | break; |
| 1070 | case E_UNEQUAL: |
| 1071 | if (e->left.sym->name) |
| 1072 | fn(data, e->left.sym, e->left.sym->name); |
| 1073 | else |
| 1074 | fn(data, NULL, "<choice>" ); |
| 1075 | fn(data, NULL, "!=" ); |
| 1076 | fn(data, e->right.sym, e->right.sym->name); |
| 1077 | break; |
| 1078 | case E_OR: |
| 1079 | expr_print(e: e->left.expr, fn, data, prevtoken: E_OR); |
| 1080 | fn(data, NULL, " || " ); |
| 1081 | expr_print(e: e->right.expr, fn, data, prevtoken: E_OR); |
| 1082 | break; |
| 1083 | case E_AND: |
| 1084 | expr_print(e: e->left.expr, fn, data, prevtoken: E_AND); |
| 1085 | fn(data, NULL, " && " ); |
| 1086 | expr_print(e: e->right.expr, fn, data, prevtoken: E_AND); |
| 1087 | break; |
| 1088 | case E_RANGE: |
| 1089 | fn(data, NULL, "[" ); |
| 1090 | fn(data, e->left.sym, e->left.sym->name); |
| 1091 | fn(data, NULL, " " ); |
| 1092 | fn(data, e->right.sym, e->right.sym->name); |
| 1093 | fn(data, NULL, "]" ); |
| 1094 | break; |
| 1095 | default: |
| 1096 | { |
| 1097 | char buf[32]; |
| 1098 | sprintf(s: buf, format: "<unknown type %d>" , e->type); |
| 1099 | fn(data, NULL, buf); |
| 1100 | break; |
| 1101 | } |
| 1102 | } |
| 1103 | if (expr_compare_type(t1: prevtoken, t2: e->type) > 0) |
| 1104 | fn(data, NULL, ")" ); |
| 1105 | } |
| 1106 | |
| 1107 | static void expr_print_file_helper(void *data, struct symbol *sym, const char *str) |
| 1108 | { |
| 1109 | xfwrite(str, len: strlen(s: str), count: 1, out: data); |
| 1110 | } |
| 1111 | |
| 1112 | void expr_fprint(struct expr *e, FILE *out) |
| 1113 | { |
| 1114 | expr_print(e, fn: expr_print_file_helper, data: out, prevtoken: E_NONE); |
| 1115 | } |
| 1116 | |
| 1117 | static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str) |
| 1118 | { |
| 1119 | struct gstr *gs = (struct gstr*)data; |
| 1120 | const char *sym_str = NULL; |
| 1121 | |
| 1122 | if (sym) |
| 1123 | sym_str = sym_get_string_value(sym); |
| 1124 | |
| 1125 | if (gs->max_width) { |
| 1126 | unsigned = strlen(s: str); |
| 1127 | const char *last_cr = strrchr(s: gs->s, c: '\n'); |
| 1128 | unsigned last_line_length; |
| 1129 | |
| 1130 | if (sym_str) |
| 1131 | extra_length += 4 + strlen(s: sym_str); |
| 1132 | |
| 1133 | if (!last_cr) |
| 1134 | last_cr = gs->s; |
| 1135 | |
| 1136 | last_line_length = strlen(s: gs->s) - (last_cr - gs->s); |
| 1137 | |
| 1138 | if ((last_line_length + extra_length) > gs->max_width) |
| 1139 | str_append(gs, s: "\\\n" ); |
| 1140 | } |
| 1141 | |
| 1142 | str_append(gs, s: str); |
| 1143 | if (sym && sym->type != S_UNKNOWN) |
| 1144 | str_printf(gs, fmt: " [=%s]" , sym_str); |
| 1145 | } |
| 1146 | |
| 1147 | void expr_gstr_print(const struct expr *e, struct gstr *gs) |
| 1148 | { |
| 1149 | expr_print(e, fn: expr_print_gstr_helper, data: gs, prevtoken: E_NONE); |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * Transform the top level "||" tokens into newlines and prepend each |
| 1154 | * line with a minus. This makes expressions much easier to read. |
| 1155 | * Suitable for reverse dependency expressions. |
| 1156 | */ |
| 1157 | static void expr_print_revdep(struct expr *e, |
| 1158 | void (*fn)(void *, struct symbol *, const char *), |
| 1159 | void *data, tristate pr_type, const char **title) |
| 1160 | { |
| 1161 | if (e->type == E_OR) { |
| 1162 | expr_print_revdep(e: e->left.expr, fn, data, pr_type, title); |
| 1163 | expr_print_revdep(e: e->right.expr, fn, data, pr_type, title); |
| 1164 | } else if (expr_calc_value(e) == pr_type) { |
| 1165 | if (*title) { |
| 1166 | fn(data, NULL, *title); |
| 1167 | *title = NULL; |
| 1168 | } |
| 1169 | |
| 1170 | fn(data, NULL, " - " ); |
| 1171 | expr_print(e, fn, data, prevtoken: E_NONE); |
| 1172 | fn(data, NULL, "\n" ); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | void expr_gstr_print_revdep(struct expr *e, struct gstr *gs, |
| 1177 | tristate pr_type, const char *title) |
| 1178 | { |
| 1179 | expr_print_revdep(e, fn: expr_print_gstr_helper, data: gs, pr_type, title: &title); |
| 1180 | } |
| 1181 | |