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ABSTRACT

We discuss ordinary as well as supersymmetric
SU(5)xU(1) models in the hope of accommodating
acceptable Tp and sinzew. The ordinary
SU(5)xU(1l) model does not have the monopole.
The supersymmetric SU(5)xU(1) model can be
unified in S0(10).
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1. Grand unified theories (GUTs) provide a well-defined framework capable of
unifying weak, electromagnetic and strong interactionsl). The "hard”
predictions of GUTs include sinZ6_ = 0.215, mb/m ~ 2.9 and proton decay
mainly to e+n0 with a lifetime Tp ~ 1029il years. On the other hand, GUTs

have a rich topological structure such that superheavy monopoles (M ~ 1016

2)
g 3)

GeV) are contained in the particle spectrum of the theory Present

+
experimental evidence disfavours either proton decay to e ¢ or the

existence of monopoles as predicted in the minimal SU(5)1)’4).

5)

It is remarkable that by going supersymmetric™ ', both the above preoblems
are naturally eliminated, while sinzew and mb/m’c remain unchanged6). Namely,
in SUSY GUTs the p ~» e+n0 mode is naturally suppressed (vK or K modes are the
favourable channels) while a delayed phase traunsition from the GUT to the
SU(3)xSU(2)xU(Ll) phase (Tc ~ 1019 Gev) or inflation 7 evades the monopole

problem.

Nevertheless, it is of considerable interest and a challenging problem to
construct ordinary GUTs which do not suffer from the above deseases. This is
the problem that we address in this paper, out of scientific curiosity, since
we are fully aware of the "goodies"” of SUSY models. It is by considering
the introduction of an extra E(l) which contains a part of the electromagnetic
gauge group U(l)em that there is no stable monopole in the theory and the
monopole problem does not exist. Furthermore, the SU(N)} coupling constant and
the ﬁ(l) coupling constant can be arbitrary and hence the proton lifetime can

be made sufficiently longer.

With proper phenomenological inputs, we calculate the SU(N) coupling

constant g§ and the (1) coupling constant g? at the SU(3)xSU(2) unification

scale M. 1f g§ < gi the group SU(N)xU(l) is the partial unification group,
and we achieve our objectives. If gé > gi, there exists a possibility of

further unification of SU(N)xﬁ(l). Then we cannot resist unifying it in a
simple group at Mu > ﬁ, and in this case, the monopole problem is resolved by
7)

the inflationary idea “. Indeed, we encounter both of these examples in

SU(S5)xU(1) models with and without supersymmetry.



The paper is organized as follows. In Section 2, we set our rules for
finding fermion representations in SU(N)xU(l) models and point out that only
one class of models is available for our purpose. In Sections 3 and 4, we
present SU(S)xﬁ(l) models with and without SUSY, respectively. 1In Section 5,
we show that an SU(?)xﬁ(l) model with integer charged leptons is not a viable

choice.

8)-10)

2. With educated reasons , we set the following rules for SU(N)Xﬁkl)

theories:

i) There should not exist triangle anomalies;
ii) The fermion representation must be chiral under SU(N)xﬁ(l),

iii) The fermion representation must be real under the subgroup SU(3)CXU(1)em'

Let us concentrate on completely antisymmetric fermion representations of
the SU(N) groups. This is reasonable because the quarks are believed to be 3
and 3* of SU(B)C. An irreducible fermion representation with m
antisymmetrized indices is denoted as RE. There exist three types of triangle

anomalies

[AAA]: A, [AAY] A [WVJ: o

for a fermion loop Ri where A and Y inside the bracket represent the external
SU(N) gauge bosons or U(l) gauge bosons. Therefore, we satisfy three anomaly
free conditions. From conditions of vanishing Al’ A2 and A3 ancmalies, we
obtain

Z
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N-4 ~ 3 ~ 3
Enmdmym +noY0 =0 (4)

where no is the number of irreducible representations Ri, and ?ﬁ is the ﬁ(l)
charge of the representation Ri. We also introduce an SU(N) singlet Rg whose
Y value is YO. Note that it is generally difficult to satisfy Eqs. (2)-(4)
without a singlet. With a singlet(s), Eq. (4) is merely a defining equation

for Y This definition is possible because a cubic equation has always a

0"
real root.

Let us first find out the simplest solution to Egs. (2)-(4).
Equation (4) is satisfied by the introduction of SU(N) singlet(s). The
simplest solution is obtained by precise matching of each term in the sum of

(2) and (3), which results in the condition

N ~ Zm (5)

Y.

This solution is equivalent to the hypercharges of irreducible representations
11)

i

of SU(N) when a spinor representation of SO(2N) breaks imnto SU(N) xU(1)
The simplest choice is therefore o= 0 for m = odd and oo 1 for m = even,
which is obtainable from one spinor representation of SO(2N). This

representation then satisfies the properties ii) and iii) too.

Let us next consider possibilities of more general sclutions. For this
purpose, the constraints i1) and iii) play important roles. Indeed, there
exists a study of thils problem in the literaturelo). The conclusion is that
(reducible) fermion representations with properties i)-iii) are possible only
for the spinor representations of SU(2nt+l), i.e., the representations obtained
from the spinor representation of S0(4n+2)., In Ref. 10}, the conclusion was
drawn without ﬁ(l). Nevertheless, we will get the same result with the
inclusion of ﬁ(l) also since the result of Ref. 10) led tc the spinor of

SU{2n+1). Thus, possible fermion spectra satisfying properties i)-ili) are

expected to be:

Yoo+ A . Su(s) x i)

(6)

SU(?)x 4)

'\l’o( + ’Y'“/« + 4'/;(/434



,q‘o(p 0(/75 'V{ ) (6)
QFK + ! ma. * ‘Y : 56((9))(”4 cont.

We show this property explicitly for SU(S)xﬁ(l) and SU(?)Xﬁ(l). The
complexity property 1is apparent from the representations (6). The reality
property is equivalent to the existence of all possible Yukawa couplings which
can give masses to all SU(3)C><U(1)em non—-trivial fermions. Therefore, we study
all possible Yukawa couplings instead of checking the SU(3)C><U(1)em property.
We know that SU(2n+l) fermions are real if all possible Yukawa couplings are
allowed. Thus, we prove the reality property by the following dictum. First,
write down all possible Yukawa couplings allowed by the SU(2n+l) gauge
symmetry only. Then, assign U(1) hypercharge by the formula (3). If some
couplings are forbidden by the (1) hypercharge, there is a chance that some
fermions do not get masses. If (1) hypercharges of Higgs fields are not
completely determined, there will remain a global symmetry which forbids
mixings between the fermion generations or even some fermions would not get
masses. However, if the U(1) hypercharges of the Higgs fields are uniquely

determined, then we obtain the desired reality property.

For SU(5)xﬁ(1), the hypercharge assignment by Eq. (3) is identical to the
one by Eq. (5), i.e.,

Y (%) = -3 , Y(4¥): 1 )

The Yukawa couplings are

o« (8, 0, &
"f'“"f' H/d , +Ot H Ea(/JTJE (8a,b)

which uniquely determine

Y (H*) = -2 ®

Therefore, we satisfy the reality condition.
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For SU(7)xU(1l), we can satisfy Eq. (3) by the following assignment
Y ( "h(/a*) = -4
Y(y#2 )=y S
Y(¥a)| = 10-5y
YA FU, Yl
g XpTemvs

{lla,b,c,d)

My Vors Huvs

‘Ybo94?’HP aﬂ; }{‘/Q‘V§> E:‘%Z?Eré/&tvj:

Equations (10) and (l1) are satisfied with y = 3, i.e.,

N

Y%l=-5, Y(+*%)- 3, ¥, -1
Yiu)=-2 , Y(u%7)=-¢

which agrees with the assignment (5). The spinor representation is real.

(12)

We have also checked this reality property for SU(9)xU(1). It is
believed that the spinor representation of SU(20+1) xU(1) with the hypercharge
given by Eq. (5) satisfies properties i)~iii) provided a SU(2n+l) singlet has
Y( 4) = 2mti. '

~ %
3. Let us consider an SU(5)xU(l) model ) without SUSY. This model has the

3)

same particle assignment as Barr's1 , but we differ in philosophy from his by

not unifying ﬁ(l) within S0(10). The electromagnetic charge Qem is given by

— —— —— — et o e - —— —_—— e A e e

*
)In another context, SU(5)xU(1l) was considered in Ref. 12).
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Q = IB-'?Y,-!--;-Y (13)
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N
Y = (4/ 4! 4/' 4/ 4/ 414:4/ 1/' 1) ey

Defining the coupling constants associated with T

Y' and Y by 8y g’
14)

3,
and g, respectively, we have a relation

el (7&2 + jzz ?2

To study and compare the evolution of coupling constants, it 1s useful to

1 . _4 2/25 , /35 an)

define properly normalized generators Yi = C'Y' and ?l = CY such that (on the

sixteen states)
~ 2
T %) = (%) =TT =2 o

(i.e., C'2 = 3/5 and 62 = 1/40) and the associated coupling constants verify
62' 2 2 ~ 2
52. 1 54
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In particular, we obtain for .~?.in29W at the SU(5) unification scale M where

g, () = g (M) = g

3 1 o
ol

where g_ is the unification coupling constant at M. 1f g =g, sin2 - 3/8
5 81 7 &

. 9 0___
sin® &, =

as expected. To have a larger proton decay rate than the one of the SU(5)
model, we must start with a relation ,gsl < Igl’ at ¥ so that the prediction
of sin 0 (MW) is untouched with a larger GUT gap, Mw-—M Because of the
condition ,85, < Igll, we cannot further unify SU(5)><U(1).

The evolution of coupling constants is

T ™ 52 el 3|l

4 -1 A 22 . 4 NH /(ﬁ 2
- + - +—N_.+— 1 (22)

s~ g gy bl

where Ng and N._ are numbers of families and Higgs doublets. The wvalue gf(ﬁ')
ig related to 8 and ?gvi(ﬁ) by



4 _ 25 29425
9,(R)  g(F) ()
From (21) and (22), we obtain a useful relation
'41 M = ZU(KIMQ-&W/%“‘-'I/M‘) (25)
My Mfy + Nujg M,

., 2
y’ Sin eW(MW

Table 1 the values M, sinzew(ﬁ), and (gg/g%)ﬁ. For example, for Ng = 3,

.2 a - -l _ .
NH = 1, sin BW(MW) = 0,215, ac(Mw) 0.13 and aem(Mw) 128, we cobtain

M = 9XIO15 GevV, Tp = 1035 years, and (gg/gf)ﬁ = 0.97. If higher order effect

2
1
simple group for this attractive set of input parameters

(24)

For various input parameters of N ) and aC(Mw), we present in

does not change the relation (gg/g )ﬁ < 1, we cannot unify SU(5)>U(l) in a

*)

In this case,
there would not exist a monopcle and TpiS too long to be observed by current

proton decay detectors.

4. For the case of SUSY SU(S)xﬁ(l), we obtain
1 +2N)2(/‘7
ok, = 3 Tar® (77 gl Mg
Y A
1 4 {_g+2f§*§~”)/ {g;) -

M R R I

(26)

e _— (29)

* ~
)However, nofe that we can have (gi/gi)ﬁ > 1 for NH = 2.
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In Table 2, we present the values of M, sinzeW(M) and (g5/g1)ﬁ for several
input parameter sets. We note that for the case of NH = 2 reasonable values
of M are obtalned from acceptable values of 31n28 (M )}. Furthermore, it

generally gives (gS/gl)M > 1, implying a possibility of unlflcatlon in 50(10).

For exanple, for Ng = 3, NH = 2, sin e (M ) = 0.215, « (MW) = O 13 and
-1 ~ 33
= i o~ 15 o~ =4
aem(MW) 128, we obtain M = 2.5x10 GeV, Tp = 10 vears, and (gS/gl)M =
% 1.32. The case N, = 4 is not successful.

H

5. In this section, we present an analysis for the SU(7)xﬁ(l) model based on
the fermion spectrum of Ref. 13). For the fermion spectrum obtainable from
S0(4n+2), it is pgenerally true to have only two patterms of SU(2n+1)xﬁ(1):
one is the usual SU{2n+1) and the other is the anti- SU(2n+l)xﬁ(1). The
Dynkin welght diagram of the spinor of S0(4n+2) has a distinctive

shapell)’15)-

The interconnected central part is connected to two strings
with two weights on each string. The weight on the end of a string is either
the highest or the lowest weight. Only these two weights can be singlets
uander SU(2n+1)XE(l), since we can disconnect only one simple root from either
of these two to make the root a singlet under SU(2n+1)xﬁ(l). The analysis
presented in this part can be applied to SU(7)Xﬁ(1) models with fractionally

charged leptons.

The anti—SU(?)xﬁ(l) mecdel has the following relations,

Qem Y + 3z ’Yv (30)
g

Y(?) = d'aj(za'jg'f‘gf‘ﬁ*i'&%? ":75"'3") o)

Yal=2 ,  YF=-5

Y(zﬂ = 3 y Y(é—) =-1 (32)-(35)

ez 522 54' 2 (74 (36)
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where gi and ﬁl are the coupling constants for properly normalized generators.

T~ Y' 2(’!{“) = 'g_g‘ (37)
, 4

-ﬁ" qu‘(ry,d/e} = (N-Z)-T;' Y (4';0() (38)

Tr Y'Q('q'cpea): -2 )éN“?’-TF -le(qf“) (39

T Y = a6

T V() =28

1 1 N 95/24 S/(#
el 2 ' 2 s

Je H 1
j:ipgz'(gg o - :Z:l /‘élttef

w é 2

4+ ?9' (3-?-/3;2)ﬁ

Certainly, we obtain sinzeg = 3/20 for g; = gl.

(42)

(43)

The renormalization group analysis of coupling constants does not give
acceptable intermediate mass scales, and we do not succeed in the SU(7)>T(1)
model. However, it will be certainly possible to have acceptable intermediate

scales for SU(7)xﬁ(1) models with fractionally charged leptons.
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6. We have seen that adding supersymmetry to the SU(5)><I7(1) model leaves
open the possibility of subsequent unification. At f’f, g5/§l> 1, and then
these coupling constants will meet at some new scale Mu > M, where unification
into 80(10) for instance can occur. We will now discuss the supergymmetric

*
S0(10) model ) and the possible realization of the symmetry breaking pattern

So(40) —> Su(5) x i)
—> Su(3), x Suz), x u/,r)y

(44)

SO0(10) breaking into SU(5)xU(1) can, in principle, be induced by a real
antisymmetric temsorial representation with an even number of indices, i.e.,
ig or %}VQ’ denoted generically by ¢. &,,SV does not possess a cubic invariant.
Thus, the corresponding superpotential is only a mass term 3M Tr ¢2, which
leads to the wvanishing vacuum expectation value (v.e.v.). This mnegative
result can be corrected by coupling 45 to other multiplets, price to be paid
being that the scale and the little group of the v.e.v. is fixed by this new
sector of the model. This problem does not occur with %1,9. where the
superpotential reads %M Tr ¢2 + A/3 Tr @3 leading to a v.e.v. of order M/)\
which breaks, among other possibilities, S0(10) into SU(5)xﬁ(1).

For the second step of symmetry breaking, SU(S)xﬁ(l) + SU(3)xSU(2)xU(l),
the two natural Higgs candidates are 16 and 126, the desired v.e.v. being in
the l}glpart of ,1\,9,: and in 222 of L%Q However, the LZVGV is more attractive,
since 1its coupling to quark and lepton supermultiplets will give a large
Majorana mass to right-handed neutrincs. This is not the case using }f}v, and
since the non-renormalization properties of SUSY suppress radiative

corrections, one would get an unacceptable spectrum for neutrinos. Then,

using ,%l,g, and i,%ﬁ’f"k%g (denoted respectively by ¢, ¢, ¢), the most general

cubic (i.e., renormalizable) superpotential is

W = %’—7? ¢2 +—§‘-7?¢3
ro FeY + ¥

(45)

*
)Supersymetric SO(10) models with different patterns of symmetry breaking

have been considered in Refs. 16) and 17).
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with indices and gamma matrices omitted for clarity. We need both 126 and 126

chiral multiplets to have a superpotential for these fields and to cancel the

7)

v.e.v. of the gauge part of the potentiall . This latter requirement

enforces the v.e.v.s of Egg‘and'izg to have the same scale and the same little
group. Solving the minimum equationsls), (dW/d¢) = (dW/dy) = 0 for this
superpotential, leads to two difficulties. TFirst, the natural solution is to
obtain unbroken SU(5). The E¢¢ coupling has in fact a tendency to align the
v.e.v.5 of %LQ (or ii) and L%i' The second problem is that this
superpotential | does not possess two actual scales. The v.e.v. of ¢ is of
order M/A. Hoﬁever, (aW/B3¢) = 0 leads to <¢> = W/ a and a tuning of parameters

is necessary. To solve these problems, we need non-renormalizable terms like,

for instance,

L FyTFY o
A

To obtain <¢> =~ M/ = 0(1017 GeV) and <¢> = 0(1016 GeV), we will have to

impose a/B < 0(10—4) and w/ o > 0(1017 GeV). Notice that choosing o = 0 leads
to pseudo—-Goldstone multiplets. Such non-renormalizable terms are naturally

6)

obtained in supergravity unified models “.

5. CONCLUSIONS

The anti-SU(5) models, the ordinary and supersymmetric ones, can be
realistic unified models with acceptable sinzew and Tp- The ordinary
SU(5) (1) model is not unified in a simple group and hence there is no stable
monepole. The supersymmetric SU(5)xU(1) model can be realistically unified in
the S0(10) group. Other SU(N)xU(l) models without fractionally charged

leptons cannot be made realistic.



® and (g%/@%)ﬁ in ordinary SU(5)x0(1).
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TABLE 1

Ny Isine (0 | a (4 1% sin?ay(® | (5/8Dy
1 0.215 0.10 2.18x1014 0.35% 1.074
1 0.215 0.13 9.58x101° 0.382 0.970
1 0.215 0.16 1.02x1017 0.397 0.910
1 0.225 0.10 1.73x101° 0.382 0.969
1 0.225 0.13 7.59x1016 0.405 0.875
1 0.225 0.16 8.07x1017 0.420 0.820
2 0.215 0.10 | 6.63x1013 0.351 1.116
2 0.215 0.13 2.49x101° 0.372 1.012
2 0.215 0.16 2.40x1016 0.386 0.952
2 0.225 0.10 4.81x101% 0.373 1.009
2 0.225 0.13 1.81x101%6 0.395 0.914
2 0.225 0.16 1.74x1017 0.410 0.859
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TABLE 2

M and (g%/é’%)ﬁ in SUSY SU(5)>T(1).

sinzew(Mw) a. (M) 15 sinzew(lcf) (g%/é’%)g
0.215 0.10 6.63x1013 0.294 1.456
0.215 0.13 2.49%101° 0.315 1.316
0.215 0.16 2.40x1016 0.330 1.225
0.225 0.10 4.81x101"4 0.322 1.275
0.225 0.13 1.81xi018 0.347 1.136
0.225 0.16 1.74x1017 0.365 1.046
0.215 0.10 2.76x1011 0.251 1.823
0.215 0.13 5.02x1012 0.261 1.730
0.215 0.16 3.07x1013 0.268 1.667
0.225 0.10 1.34x1012 0.272 1.631
0.225 0.13 2.44x1013 0.284 1.533
0.225 0.16 1.49x1014 0.293 1.467
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