Research
I study machine learning and artificial intelligence using applied probability. Developing a principled understanding of decision-making and explore-exploit tradeoffs is the next key step on the path to creating machine intelligence. The brain evolved to efficiently process information, and then use it to decide what to do: therefore, so should our algorithms.
Talks
Research Areas and Selected Papers by Topic
The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
Ziv Scully and Alexander Terenin
INFORMS Tutorials in OR 2025
Bayesian Algorithms for Adversarial Online Learning: from Finite to Infinite Action Spaces
Alexander Terenin and Jeffrey Negrea
Preprint
Multi-objective Bayesian optimisation for design of Pareto-optimal current drive profiles in STEP
Theodore Brown, Stephen Marsden, Vignesh Gopakumar, Alexander Terenin, Hong Ge, and Francis Casson
IEEE Transactions on Plasma Science 2024
Gaussian Processes and Statistical Decision-making in Non-Euclidean Spaces
Alexander Terenin
PhD Thesis
The Gittins Index: A Design Principle for Decision-Making Under Uncertainty
Ziv Scully and Alexander Terenin
INFORMS Tutorials in OR 2025
Bayesian Algorithms for Adversarial Online Learning: from Finite to Infinite Action Spaces
Alexander Terenin and Jeffrey Negrea
Preprint
Multi-objective Bayesian optimisation for design of Pareto-optimal current drive profiles in STEP
Theodore Brown, Stephen Marsden, Vignesh Gopakumar, Alexander Terenin, Hong Ge, and Francis Casson
IEEE Transactions on Plasma Science 2024
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier, Viacheslav Borovitskiy, Andrei Smolensky, Alexander Terenin, Tamim Asfour, and Leonel Rozo
CoRL 2021
Stochastic Gradient Descent for Gaussian Processes Done Right
Jihao Andreas Lin, Shreyas Padhy, Javier Antorán, Alexander Terenin, José Miguel Hernández-Lobato, and David Janz
ICLR 2024
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward Rasmussen, and Hong Ge
JMLR 2024
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces
Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy
JMLR 2024
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case
Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy
JMLR 2024
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa, Viacheslav Borovitskiy, Alexander Terenin, and Judith Rousseau
NeurIPS 2023
Gaussian Processes and Statistical Decision-making in Non-Euclidean Spaces
Alexander Terenin
PhD Thesis
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier, Viacheslav Borovitskiy, Andrei Smolensky, Alexander Terenin, Tamim Asfour, and Leonel Rozo
CoRL 2021
Multi-objective Bayesian optimisation for design of Pareto-optimal current drive profiles in STEP
Theodore Brown, Stephen Marsden, Vignesh Gopakumar, Alexander Terenin, Hong Ge, and Francis Casson
IEEE Transactions on Plasma Science 2024
The Cambridge Law Corpus: A Dataset for Legal AI Research
Andreas Östling, Holli Sargeant, Huiyuan Xie, Ludwig Bull, Alexander Terenin, Leif Jonsson, Måns Magnusson, and Felix Steffek
NeurIPS 2023
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier, Viacheslav Borovitskiy, Andrei Smolensky, Alexander Terenin, Tamim Asfour, and Leonel Rozo
CoRL 2021
Pólya Urn Latent Dirichlet Allocation: A Doubly Sparse Massively Parallel Sampler
Alexander Terenin, Måns Magnusson, Leif Jonsson, and David Draper
IEEE TPAMI 2019