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Abstract

We focus on the one-shot learning for video-based

person re-Identification (re-ID). Unlabeled tracklets for

the person re-ID tasks can be easily obtained by pre-

processing, such as pedestrian detection and tracking. In

this paper, we propose an approach to exploiting unla-

beled tracklets by gradually but steadily improving the dis-

criminative capability of the Convolutional Neural Network

(CNN) feature representation via stepwise learning. We first

initialize a CNN model using one labeled tracklet for each

identity. Then we update the CNN model by the following

two steps iteratively: 1. sample a few candidates with most

reliable pseudo labels from unlabeled tracklets; 2. update

the CNN model according to the selected data. Instead

of the static sampling strategy applied in existing works,

we propose a progressive sampling method to increase the

number of the selected pseudo-labeled candidates step by

step. We systematically investigate the way how we should

select pseudo-labeled tracklets into the training set to make

the best use of them. Notably, the rank-1 accuracy of our

method outperforms the state-of-the-art method by 21.46

points (absolute, i.e., 62.67% vs. 41.21%) on the MARS

dataset, and 16.53 points on the DukeMTMC-VideoReID

dataset1.

1. Introduction

Person re-identification (re-ID) aims at spotting the

person-of-interest from different cameras. In recent years,

person re-ID on the large-scale video data, such as surveil-

lance videos, has attracted significant attention [10, 20, 28,

32, 35]. Most proposed approaches rely on the fully anno-

tated data, i.e., the identity labels of all the tracklets from

multiple cross-view cameras. However, it is impractical

to annotate very large-scale surveillance videos due to the

∗Corresponding author.
1The code is publicly available at: https://yu-wu.net
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Figure 1. An illustration of the unlabeled data sampling procedure

in the feature space. The hollow point and solid point denote the

labeled tracklet and unlabeled tracklet, respectively. The pseudo

label of each unlabeled tracklet is assigned by its nearest labeled

neighbor (indicated by the colored line). Different colors represent

different identities. Samples in the shade will be incorporated into

training. We adopt the easy and reliable pseudo-labeled tracklets

for updating at the beginning and difficult ones in subsequence.

dramatically increasing cost. Therefore, semi-supervised

methods [21, 34] are of particular interest. This work

mainly focuses on the one-shot setting, in which only one

tracklet is labeled for each identity.

The key challenge for the one-shot video-based person

re-ID is the label estimation for the abundant unlabeled

tracklets [7, 34]. A typical approach is to generate the

pseudo labels for the unlabeled data at first. The initial la-

beled data and some selected pseudo-labeled data are con-

sidered as an enlarged training set. Lastly, this new training

set is adopted to train the re-ID model.

Most existing methods employ a static strategy to deter-

mine the quantity of selected pseudo-labeled data for fur-

ther training. For example, Fan et al. [7] and Ye et al. [34]

compare the prediction confidences of pseudo-labeled sam-

ples with a pre-defined threshold. The samples with higher

confidence over the fixed threshold are then selected for the

subsequent training. During iterations, these algorithms se-
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lect a fixed and large number of pseudo-labeled data from

beginning to end. However, it is inappropriate to keep the

threshold fixed in the one-shot setting. In this case, the ini-

tial model may be not robust due to the very few training

samples. Only a few of pseudo-label predictions are reli-

able and accurate at the initial stage. If one still selects the

same number of data as that in the later stages, it will in-

evitably involve many unreliable predictions. Updating the

model with excessive not-yet-reliable data would hinder the

subsequent improvement of the model.

In this paper, to better exploit the unlabeled data in one-

shot video-based person re-ID, we propose the stepwise

learning method EUG (Exploit the Unknown Gradually).

Initially, a CNN model is trained on the one-shot labeled

tracklet. EUG then iteratively updates the CNN by two

steps, the label estimation step and the model update step.

In the first step, EUG generates the pseudo labels for unla-

beled tracklets, and selects some of pseudo-labeled tracklets

for training according to the prediction reliability. The se-

lected subset is continuously enlarged during iterations ac-

cording to a sampling strategy. In the second step, EUG

re-trains the CNN model on both the labeled data and the

sampled pseudo-labeled subset. Particularly, as illustrated

in Figure 1, EUG starts with a small-size subset of pseudo-

labeled tracklets, which includes only the most reliable and

easiest ones. In the subsequent stages, it gradually selects

a growing number of pseudo-labeled tracklets to incorpo-

rate more difficult and diverse data. This is different from

existing methods [21, 34].

To characterize the proposed progressive approach in

one-shot person re-ID, we intensively investigate two sig-

nificant aspects, i.e., how the progressive sampling strategy

benefits the label estimation and which sampling criterion

is effective for the confidence estimation in person re-ID.

For the first aspect, we find that if we enlarge the sam-

pled subset of pseudo-labeled data in a more conservative

way (at a slower speed), the model achieves a better per-

formance. If we enlarge the subset in a more aggressive

way (at a faster speed), the model achieves a worse perfor-

mance. Note that the previous static sampling strategy can

be viewed as an extremely aggressive manner. For the sec-

ond aspect, we investigate the gap between the classifica-

tion measures and retrieval evaluation metrics. We find that

the sampling criteria highly affect the performance of the

proposed method. Instead of the classification measures, a

distance-based sampling criterion for the reliability estima-

tion may yield promising performance in person re-ID.

Our contributions are summarized as follows:

• We propose a progressive method for one-shot video-

based person re-ID to better exploit the unlabeled

tracklets. This method adopts a dynamic sampling

strategy to uncover the unlabeled data. We start with

reliable samples and gradually include diverse ones,

which significantly makes the model robust.

• We apply a distance-based sampling criterion for la-

bel estimation and candidates selection to remarkably

improve the performance of label estimation.

• Our method achieves surprisingly superior perfor-

mance on the one-shot setting, outperforming the state-

of-the-art by 21.46 points (absolute) on MARS and

16.53 points (absolute) on DukeMTMC-VideoReID.

2. Related Works

Extensive works have been reported to address the video-

based person re-ID problem. One simple solution is using

image-based re-ID methods, and obtaining video represen-

tations by pooling the frame features [10, 16, 20].

Supervised Video-based Person Re-ID. Recently, a

number of deep learning methods are developed [24, 29, 32,

35, 39, 40]. The typical architecture is to combine CNN and

RNN to learn a video representation or the similarity score.

In [40], temporal attention information and spatial recur-

rent information are used to explore contextual representa-

tion. Another commonly used architecture is the Siamese

network architecture [18, 29, 32], which also achieve rea-

sonably good performance.

Semi-Supervised Video-based Person Re-ID. Most

works of semi-supervised person re-ID are based on image

[1, 8, 19, 22]. The approaches of these works include dic-

tionary learning, graph matching, metric learning, etc. To

the best of our knowledge, there are three works aiming at

solving the semi-supervised video-based re-ID task. Zhu et

al. [41] proposed a semi-supervised cross-view projection-

based dictionary learning (SCPDL) approach. A limitation

is that this approach is only suitable for datasets that only

captured by two cameras.

There are two recent works designed for one-shot video

re-ID task [21, 34]. Although [21, 34] claim them as un-

supervised methods, they are one-shot methods in experi-

ments, as they require at least one labeled tracklet for each

identity. They assume that the tracklets are obtained by

tracking, and this process is automatic and unsupervised.

Different tracklets from one camera with a long-time inter-

val are assumed representing different identities. However,

to conduct experiments in existing datasets, both methods

require the annotation of at least a sample for each iden-

tity. To be more rigorous, we take this problem as a one-

shot task. Ye et al. [34] propose a dynamic graph matching

(DGM) method, which iteratively updates the image graph

and the label estimation to learn a better feature space with

intermediate estimated labels. Liu et al. [21] update the

classifier with K-reciprocal Nearest Neighbors (KNN) in

the gallery set, and refine the nearest neighbors by apply

negative sample mining with KNN in the query set. While
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graph-based semi-supervised learning [33] could possibly

be adopted for one-shot person Re-ID, it is time-consuming

to solve a linear system for each query.

Progressive Paradigm. Curriculum Learning (CL) is

proposed in [2], which progressively obtains knowledge

from easy to hard samples in a pre-defined scheme. Ku-

mar et al. [15] propose Self-Paced Learning (SPL) which

takes curriculum learning as a regularization term to up-

date the model automatically. The self-paced paradigm is

theoretically analyzed in [13, 23]. Some works manage

to apply the progressive paradigm in the computer vision

area [5, 6, 27]. We are inspired by these progressive al-

gorithms. Compared with the existing SPL and CL algo-

rithms, we incorporated the retrieval measures (the distance

in feature space) into the learning mechanism, which well

fits the evaluation metric for person re-ID. Moreover, most

previous SPL and CL works mainly focus on the supervised

and semi-supervised task. Few are used in the one-shot

learning setting.

3. The Progressive Model

3.1. Preliminaries

We first introduce the necessary notations. Let L =
{(x1, y1), ..., (xnl

, ynl
)} be the labeled dataset, and U =

{(xnl+1), ..., (xnl+nu
)} be the unlabeled dataset, where xi

and yi denotes the i-th tracklet data and its identity label, re-

spectively. We thus have |L| = nl and |U| = nu where |·| is
the cardinality of a set. Following recent works [7, 17, 38],

we take the training process as an identity classification

task. For training on the labeled dataset, we have the fol-

lowing objective function:

min
θ,w

nlX

i=1

`(f(w;φ(θ;xi)), yi), (1)

where φ is an embedding function, parameterized by θ, to

extract the feature from the data xi. CNN models [3, 4,

9, 11, 30, 31] are usually used as the function φ. f is a

function, parameterized by w, to classifier the embedded

feature φ(θ;xi) into a k-dimension confidence estimation,

in which k is the number of identities. ` denotes the suffered

loss on the label prediction f(w;φ(θ;xi)) and its ground

truth identity label yi.

To exploit abundant unlabeled tracklets with pseudo la-

bels, we consider the following objective function in the

one-shot re-ID problem:

min
θ,w,si,ŷi

nlX

i=1

`(f(w;φ(θ;xi), yi))+

nl+nuX

i=nl+1

si`(f(w;φ(θ;xi), ŷi)),

(2)

where ŷi denotes the machine generated pseudo labels for

the i-th unlabeled data. si 2 {0, 1} is the selection indicator

for the unlabeled sample xi, which determine whether the

suffered loss of pseudo-labeled data (xi, ŷi) is adopted in

optimizing. We use s to indicate the vertical concatenation

of all si.

In the evaluation stage, for both of query data and gallery

data, we only use φ(θ; ·) to embed each tracklet into the fea-

ture space. The query result is the ranking list of all gallery

data according to the Euclidean Distance between the query

data and each gallery data, i.e., ||φ(θ;xq)− φ(θ;xg)||2,

where xq and xg denote the query tracklet and the gallery

tracklet, respectively.

3.2. Framework Overview

In this work, we propose a stepwise learning method to

exploit the unlabeled data gradually and steadily. We adopt

an alternative algorithm to solve the Eq. (2). Specifically,

we first optimize θ and w, and then optimize ŷ and s, i.e.,

the model updating and the label estimating.

Let S denote the set of selected pseudo-labeled candi-

dates. We can obtain S by:

S = {(xi, ŷi)|si = 1, nl + 1  i  nl + nu}. (3)

Our approach first trains an initial model on the labeled data

L, and then the initial model is applied to predict pseudo la-

bels ŷ on the unlabeled data. In subsequence, according to

a label reliability evaluation criterion, we generate the se-

lection indicators s in order to obtain the candidates set S
via Eq. (3). In the model update step, the set S along with

the initial labeled set L is regarded as the new training set

D, i.e., D = L [ S . The set D will be utilized to re-train

the model so as to make the model more robust. During

training iterations, the candidates set S in each step is en-

larged continuously. In this way, we can progressively learn

a more stable model.

To be specific, for our progressive strategy EUG, we

adopt an end-to-end CNN model with temporal average

pooling (ETAP-Net) as the feature embedding function φ.

The ETAP-Net is an adaption of ResNet-50 architecture for

video inputs, where we add a fully-connected layer and

a temporal average pooling layer before the classification

layer. As shown in Figure 2, for each tracklet, all frames

are processed to obtain frame-level feature embedding. The

frame features within a tracklet are then element-wise aver-

aged as the tracklet feature representation by the temporal

average pooling layer. In the label estimation step, for each

unlabeled video tracklet, the pseudo label is assigned by the

identity label of its nearest labeled neighbor in the tracklet

feature space. The distance between them is considered as

the dissimilarity cost, which is used to measure the reliabil-

ity of its pseudo label.

5179



Re-train

Feature spaceCNN model

T
em

p
o

ra
l 

av
er

ag
e 

p
o

o
li

n
g

Shared weight

Tracklet Feature extraction

Classification training

Unlabeled set

Labeled set

Selected reliable candidates

Labeled tracklet

Union

Unlabeled tracklet…
 …

Initialize

…
 …

…
 …

Extracted

Figure 2. Overview of the framework. Different colors represent different identity samples. The CNN model is initially trained on the

labeled one-shot data. For each iteration, we (1) select the unlabeled samples with reliable pseudo labels according to the distance in

feature space and (2) update the CNN model by the labeled data and the selected candidates. We gradually enlarge the candidates set

to incorporating more difficult and diverse tracklets. For a tracklet, each frame feature is first extracted by the CNN model and then

temporally averaged as the tracklet feature. We take the training process as an identity classification task, and regard the evaluation as a

retrieval problem on the features of the test tracklets.

3.3. Progressive and Effective Sampling Strategy

It is crucial to obtain the appropriately selected candi-

dates S to exploit the unlabeled data. In this procedure,

two significant aspects are mainly considered: First, how to

ensure the reliability of selected pseudo-labeled samples?

Second, what is an effective sampling criterion on the unla-

beled data for one-shot person re-ID?

Discussion on Sampling Strategy. The reliability of

pseudo labels originates from two main challenges in the

one-shot learning setting. (1) the initial labeled data are too

few to depict the detailed underlying distribution. (2) learn-

ing a CNN model on a not-yet-reliable training set may not

improve the re-ID performance. The interplay of these two

factors hinders the further performance improving. There-

fore, it is irrational to incorporate excessive pseudo-labeled

data into training at the initial iteration.

Discussion on Sampling Criterion. The previous works

sample the unlabeled data from confident to uncertain ones

according to the classification loss [5, 6, 27]. However, the

loss from classification prediction does not well fit the re-

trieval evaluation. Moreover, it is far away to train a robust

identity classifier in the one-shot setting, where each class

has only one sample for training. The classifier may eas-

ily over-fit the one-shot labeled data and may not learn the

intrinsic distinction in classification. Therefore, the classifi-

cation prediction may be not reliable on an unseen sample.

Our Stepwise Solution. To address aforementioned

two problems, we propose (1) a dynamic sampling scheme,

which progressively increases the number of selected

pseudo-labeled samples; (2) an effective sampling criterion,

which takes the distance in the feature space as a measure

of reliability.

The proposed dynamic sampling scheme steadily in-

creases the size of selected candidates set |S| during iter-

ations. It starts with a small proportion of pseudo-labeled

data at the beginning stages, and then incorporates more di-

verse samples in the following stages. As the training iter-

ation goes, the reliability of pseudo labels grows steadily,

because the re-ID model becomes more robust and discrim-

inative. Therefore, more pseudo-labeled candidates can be

adopted into training.

For sampling criterion, instead of classification predic-

tion, we adopt the Nearest Neighbors (NN) classifier for the

label estimation. For the one-shot setting, the NN classi-

fier in the feature space may be a better choice, since sim-

ilar input data always have similar feature representations.

The NN classifier assigned the label of each unlabeled data

by its nearest labeled neighbor in feature space. We define

the confidence of label estimation as the distance between

the unlabeled data and its nearest labeled neighbor. For the

candidates selection, we select some of top reliable pseudo-

labeled data according to their label estimation confidence.
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Algorithm 1 Exploit the Unknown Gradually

Input: Labeled data L, unlabeled data U , enlarging factor

p 2 (0, 1), initialized CNN model θ0.

Output: The best CNN model θ∗.

1: Initialize the selected pseudo-labeled data S0  ;,
sampling size m1  p · nu, iteration step t  0, best

validation performance V ∗  0
2: while mt+1  |U| do

3: t t+ 1
4: Update training set: Dt  L[ St−1

5: Train the CNN model (θt,wt) based on Dt.

6: Generate the selection indicators st via Eq. (5)

7: Update St based on st via Eq. (3)

8: Update the sampling number: mt+1  mt + p · nu

9: end while

10: for i 1 to T do

11: Evaluate θi on the validation set! performance Vi

12: if Vi > V ∗ then

13: V ∗,θ∗  Vi,θi
14: end if

15: end for

More formally, we define the dissimilarity cost for each

unlabeled data xi 2 U as:

d(θ;xi) = min
xl∈L

||φ(θ;xi)− φ(θ;xl)||2, (4)

The cost is the minimum l2 distance between the unlabeled

data xi and an arbitrary labeled data xl 2 L in the fea-

ture space parameterized by θ. The dissimilarity cost is

considered as the criterion for measuring the confidence of

pseudo-labeled data. For the candidates selection, at the it-

eration step t, we sample the pseudo-labeled candidates into

training by setting the selection indicator st as follows:

st = arg min
||s||0=mt

nl+nuX

i=nl+1

sid(θ;xi), (5)

where the mt denotes the size of selected pseudo-labeled

set. As the iteration step t increases, we enlarge the size of

sampled pseudo-labeled data by set mt = mt−1 + p · nu.

p 2 (0, 1) is the enlarging factor which indicates the speed

of enlarging the candidates set during iterations. Eq. (5) se-

lects the top mt nearest unlabeled data for all the labeled

data at the iteration step t. As described in Algorithm 1, we

evaluate the model φ(θt; ·) on the validation set at each iter-

ation step and output the best model. In the one-shot experi-

ment, we take another video-based person re-ID training set

as the validation set.

How to find a proper enlarging factor p? An aggres-

sive choice is to set p to a very large value, which urges mt

to increase rapidly. As a result, the sampled pseudo-labeled

candidates may not be reliable enough to train a robust CNN

model. A conservative option is to set p to a very small

value, which means mt progressively enlarges with a small

change in each step. This option tends to result in a very

stable increase in the performance and a promising perfor-

mance in the end. The disadvantage is that it may require

an excessive number of stages to touch great performance.

4. Experiments

4.1. Datasets and Settings

The MARS dataset [36] is the largest video dataset

for the person re-identification task captured in a univer-

sity campus. The dataset contains 17,503 tracklets for 1,261

identities and 3,248 distractor tracklets, which are captured

by six cameras. This dataset is split into 625 identities

for training and 636 identities for testing. Every identity

in the training set has 13 video tracklets on average and

816 frames on average. The bounding boxes are detected

and tracked using the Deformable Part Model (DPM) and

GMMCP tracker.

The DukeMTMC dataset [26] is a large-scale dataset

aiming for multi-camera tracking. This dataset was cap-

tured in outdoor scenes with noisy background and suffers

from illumination, pose, and viewpoint change and occlu-

sions. To conduct our experiment, here we use a subset

of DukeMTMC as the DukeMTMC-VideoReID 2 dataset

specially for video-based re-ID. Since this dataset is man-

ual annotated, each identity only has one tracklet under a

camera. We crop pedestrian images from the videos for 12

frames every second to generate a tracklet. The dataset is

split following the protocol in [37], i.e., 702 identities for

training, 702 identities for testing, and 408 identities as the

distractors. Totally, we generate 369,656 frames of 2,196

tracklets for training, and 445,764 frames of 2,636 tracklets

for testing and distractors.

Evaluation Metrics. We use the Cumulative Matching

Characteristic (CMC) curve and the mean average precision

(mAP) to evaluate the performance of each method. For

each query, its average precision (AP) is computed from its

precision-recall curve. The mAP is calculated as the mean

value of average precisions across all queries. We report

the Rank-1, Rank-5, Rank-20 scores to represent the CMC

curve. These CMC scores reflect the retrieval precision,

while the mAP reflects the recall.

Experiment Setting. For one-shot experiments, we use

the same protocol as [21]. In both datasets, we randomly

choose one tracklet in camera 1 for each identity as initial-

ization. If there is no tracklet recorded by camera 1 for one

identity, we randomly select one tracklet in the next camera

to make sure each identity has one video tracklet for initial-

ization. Note that as discussed in Section 2, [21, 34] are the

same one-shot setting in experiments.

2DukeMTMC-VideoReID is available at https://yu-wu.net
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Methods
MARS DukeMTMC-VideoReID

rank-1 rank-5 rank-20 mAP rank-1 rank-5 rank-20 mAP

Baseline (one-shot) 36.16 50.20 61.86 15.45 39.60 56.84 66.95 33.27

DGM+IDE[34] 36.81 54.01 68.51 16.87 42.36 57.92 69.31 33.62

Stepwise[21] 41.21 55.55 66.76 19.65 56.26 70.37 79.20 46.76

EUG (p = 0.30) 42.77 56.51 67.17 21.12 63.82 78.64 87.04 54.57

EUG (p = 0.20) 48.68 63.38 72.57 26.55 68.95 81.05 89.46 59.50

EUG (p = 0.15) 52.32 64.29 73.08 29.56 69.08 81.19 88.88 59.21

EUG (p = 0.10) 57.62 69.64 78.08 34.68 70.79 83.61 89.60 61.76

EUG (p = 0.05) 62.67 74.94 82.57 42.45 72.79 84.18 91.45 63.23

Baseline (supervised) 80.75 92.07 96.11 67.39 83.62 94.59 97.58 78.34

Table 1. Comparison with the state-of-the-art methods on MARS and DukeMTMC-VideoReID. All the methods are conducted based on

the same backbone model ETAP-Net. Baseline (one-shot) is the initial model trained on one-shot labeled data. p is the enlarging factor

that indicates the enlarging speed of the sampled subset. At the bottom we provide the Baseline (supervised) result as a upper bound where

100% training data are labeled.

Implementation Details. We use PyTorch [25] for all

experiments. As discussed in Section 3.2, we take ETAP-

Net as our basic CNN model for training on video-based

re-ID. In experiments, we take ImageNet [14] pre-trained

ResNet-50 model with last classification layer removed as

the initialization of ETAP-Net. For training as a classifi-

cation task for each identity, an additional fully-connected

layer with batch normalization [12] and a classification

layer are appended at the end of the model. The parame-

ters of the first three residual blocks of ResNet-50 are kept

fixed in training to save GPU memory and boost iterations.

In training, we randomly sample 16 frames as the input for

each tracklet. In label estimation and evaluation steps, all

the frames are processed by the CNN model to get the rep-

resentations for each tracklet, which are further l2 normal-

ized and used to calculate the Euclidean distance. We adopt

the stochastic gradient descent (SGD) with momentum 0.5

and weight decay 0.0005 to optimize the parameters for 70

epochs with batch size 16 in each iteration. The overall

learning rate is initialized to 0.1 and changed to 0.01 in the

last 15 epochs.

4.2. Comparison with the State-of-the-Art Methods

We compare our method to DGM [34] and Stepwise [21]

on the one-shot task. Note that although [21, 34] claim

them as unsupervised methods, they are actually one-shot

methods in experiments, because they require at least one

labeled tracklet for each identity. Since the performances of

both works were reported based on hand-crafted features,

to make a fair comparison, we reproduce their methods us-

ing the same backbone model ETAP-Net (ResNet-50) as

ours. The re-ID performance on MARS and DukeMTMC-

VideoRe-ID are summarized in Table 1. On the MARS

dataset, we achieve surprising result with rank-1 accuracy

62.67%, mAP 42.45% with enlarging factor 0.05, which

greatly outperform the state-of-the-art result by 21.46 points

and 22.8 points (absolute), respectively. The great perfor-

mance gap between [21, 34] and ours is due to the excessive

not-yet-reliable pseudo-labeled data incorporated at the first

iteration. The estimation errors are accumulated during it-

erations and thus limit the further enhancement.

Moreover, Baseline (one-shot) and Baseline (supervised)

are our initial model and the upper bound model, respec-

tively. Baseline (one-shot) takes only the one-shot labeled

data as the training set and do not exploit the unlabeled

data. Baseline (supervised) is conducted on the fully super-

vised setting that all tracklets in the dataset are labeled and

adopted in training. Specifically, we achieve 26.51 points

and 33.19 points rank-1 improvements over the Baseline

(one-shot) on MARS and DukeMTMC-VideoReID, respec-

tively.

4.3. Algorithm Analysis

Analysis on the sampling criteria. As mentioned in

Section 3.3, some previous works such as SPL take the

classification loss as the criterion. The label estimation and

evaluation performances of sampling by classification loss

and by dissimilarity cost are illustrated in Figure 3 and Table

2. From the figure, we observe the huge performance gaps

for both label estimation and evaluation. The label estima-

tions of both criteria achieve similar and high precision at

the beginning stage. However, the label estimation accuracy

gap between two criteria gradually enlarges. As a result,

the performance of the classification loss criterion is only

enhanced to a limited extent and drops quickly in the sub-

sequence. Table 2 shows the evaluation performance dif-

ferences of the two criteria with different enlarging factors.

With the same enlarging factor, the criterion of sampling by

dissimilarity cost always leads to the superior performance.

When the enlarging factor is set to 0.05, the best rank-1 ac-

curacy on evaluation for classification loss and dissimilarity

cost is 48.33% and 62.67%, respectively.
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Figure 3. Comparison with two sampling criteria on MARS when the Enlarging Factor p = 0.1. (a) and (b): Precision and recall of

the pseudo label prediction of selected pseudo-labeled candidates during iterations with different sampling criteria. (c) and (d): Rank-

1 accuracy and mAP of person re-ID on the evaluation set during iterations with different sampling criteria. The x-axis stands for the

percentage of selected data from entire unlabeled data for updating. Each solid point indicates an iteration step.

Enlarging Factor Criteria rank-1 rank-5 mAP

p = 0.05
Classification 48.33 62.67 25.35

Dissimilarity 62.67 74.94 42.45

p = 0.10
Classification 46.86 60.25 24.23

Dissimilarity 57.62 69.64 34.68

p = 0.15
Classification 46.53 60.12 24.03

Dissimilarity 52.32 64.29 29.56

p = 0.20
Classification 45.91 59.95 23.56

Dissimilarity 48.68 63.38 26.55

p = 0.30
Classification 41.86 56.01 20.24

Dissimilarity 42.77 56.51 21.12

Table 2. Comparison of the two criteria on MARS. The ”Classi-

fication” and ”Dissimilarity” denotes the EUG methods with the

classification loss criterion and the dissimilarity cost criterion, re-

spectively. Note for that with the same enlarging factors, the dis-

similarity cost criterion always lead to a superior performance.

Analysis over iterations. Figure 4 illustrates the label

estimation performance and evaluation performance over

iterations. At the initial iteration, the precision of pseudo

label for the selected subset (blue line) is relatively high,

since EUG only adopts a few of most reliable samples. In

later stages, as EUG gradually incorporates more difficult

and diverse samples, the precision drops along with the re-

call (red line) rising. In spite of the descending of preci-

sion, the F-score of label estimation (green line) continuous

increases. Throughout iterations, the precision of pseudo

label estimation for all the unlabeled data (orange line) con-

stantly increases from 29.8% to 54.96%, which indicates

the model grows robust steadily. At the last few iterations,

the evaluation performance stops to increase, because the

gain of adding new samples is offset by the loss of exces-

sive pseudo label errors.

Analysis on the enlarging factor. For the iteration t,

t ⇤ p percent of unlabeled tracklets with reliable pseudo la-

bels are sampled for updating the model. The effectiveness
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Figure 4. The label estimation performance with the enlarging fac-

tor = 0.1 over iterations on MARS. ”Prec-S”, ”Recall-S” and ”F-

Score” denote the label estimation precision, recall and F-score

for the selected pseudo-labeled candidates. ”Prec-All” denotes

the overall label estimation precision for all the unlabeled data.

”mAP-Eval” represents the mAP performance of the evaluation

on the test set. Note that on all the unlabeled data the overall label

estimation accuracy is constantly increasing, which indicates the

model learns much information throughout iterations.

of enlarging factor p is shown in Figure 5. Two conclu-

sions can be inferred: First, the model always achieves a

better performance if we enlarge the selected set at a slower

speed. The huge gaps among the five curves show that the

great impact of the enlarging factor. Second, we observe

that the gaps among the five curves are relatively small in

the first several iterations and gradually enlarge in the later

iterations. It shows the estimation errors are accumulated

during iterations. This is because that the performance of

the trained CNN model highly depends on the reliability of

the training set. As a result, the evaluation performances

appear obvious different in the last few iterations.
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Figure 5. Comparison with different value of enlarging factor on MARS. (a) and (b) : Precision and recall of the pseudo label prediction

of selected candidates with different enlarging factors. (c) and (d) : Rank-1 and mAP of person re-ID on the evaluation set with different

enlarging factors. ”EF” denotes the enlarging factor. The x-axis stands for the ratio of selected data from entire unlabeled data for updating.

Each solid point indicates an iteration step. Note for that the lower enlarging factor is beneficial for improving performance.

Initialization

Missed

Iter 0

Iter 1

Iter 2

Iter 5

Iter 6

Iter 7

Figure 6. The selected pseudo-labeled tracklets for an identity ex-

ample on MARS with the enlarging factor p = 0.1. Error esti-

mated samples are in red rectangles. All the tracklets incorporated

in the former iterations are naturally selected by later ones. For

this identity, one tracklet is missed, and four false samples are se-

lected. Observe that the tracklet selected is easy and reliable at the

beginning stage and difficult and diverse in the later stage.

4.4. Visualization

We visualize the selected samples for an identity dur-

ing iterations in Figure 6. Since the initial tracklets is cap-

tured from the side view of the pedestrian, the two unlabeled

tracklets captured from the same side are easily selected in

iteration 0. In iteration 1 and 2, some tracklets in the be-

hind or front view of the pedestrian are selected. The above

tracklets are relatively easier for sampling. Further, in it-

eration 5 and 6, video tracklets suffering from obstructing

and color variance are sampled. In iteration 7, samples with

pedestrian of small size and dark background are selected.

It’s clear that the samples are selected from easy to hard,

from similar to diverse. Note that there is no tracklet se-

lected for this identity in iteration 3 and 4, which indicates

the huge difficulty gap. There are also four mismatches in

iteration 5, 6, and 7, in which the pedestrian is very similar

to the ground truth identity, with the same pink shirt, gray

pants, and long hair.

5. Conclusion

Label estimation for unlabeled tracklets is crucial for

one-shot person re-ID. The challenge in the one-shot set-

ting is that the pseudo labels are not reliable enough, which

prevents the trained model from improving robust. To solve

this problem, we propose a dynamic sampling strategy to

start with easy and reliable unlabeled samples and gradu-

ally incorporating diverse tracklets for updating the model.

We found that if we enlarge the selected set at a slower

speed, the model achieves a better performance. In addi-

tion, we present a sampling criterion to remarkably improv-

ing the performance of label estimation. Our method sur-

passes the state-of-the-art method by 21.46 points (abso-

lute) in rank-1 accuracy on MARS, and 16.53 points (ab-

solute) on DukeMTMC-VideoReID. In sum, the proposed

method is effective in exploiting the unlabeled data and re-

ducing the annotation work load for one-shot video-based

person re-ID.
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